Effect of Combustion Chamber Geometry on Performance and Emission Characteristics of a Diesel Engine Fueled with Mahua Biodiesel Blends

2014 ◽  
Vol 984-985 ◽  
pp. 900-906
Author(s):  
L. Saravanakumar ◽  
B.R. Ramesh Bapu ◽  
B. Durga Prasad

The present work investigates the effect of change in combustion chamber geometry on performance and emission characteristics of single cylinder diesel engine fuelled with mahua biodiesel. Since plant oil derived from the mahua tree has high fatty acids, it undergoes esterification followed by transesterification process to reduce its viscosity. Experiments were conducted using a blend of 20% biodiesel (B20) 40% biodiesel (B40) with diesel and compared with diesel by using two types of combustion chamber geometry, explicitly hemispherical and modified hemispherical combustion chamber. Performance parameters such as Brake Thermal Efficiency (BTE), Brake Specific Fuel Consumption (BSFC) and emission parameters like Unburned Hydro Carbon (UBHC), Oxides of Nitrogen (NOx) were studied from the diesel engine with above mentioned configurations. It is obvious that there is considerable improvement in the performance parameter viz, BTE, BSFC and reduction in UBHC emissions by using the modified geometry piston. However, the NOx emission was found to be higher than that of standard configuration. The results obtained from the blend B20 at modified combustion chamber geometry are on par with diesel and hence mahua biodiesel can be suggested as an alternative fuel for Compression Ignition (C.I) engine with modified combustion chamber geometry.

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
A. Anbarasu ◽  
A. Karthikeyan ◽  
M. Balaji

Diesel engines are widely used for their low fuel consumption and better efficiency. An investigation was carried out with a single cylinder diesel engine to establish the effects of alumina nanoparticle incorporation into the Canola biodiesel (BD) emulsion fuel. The Canola BD was formed from the Canola oil by transesterification process, and later the Canola BD emulsion fuel was prepared in the fraction of 83% of Canola BD, 15% of water, and 2% of surfactants (by volume). The alumina nanoparticles were blended with the Canola BD emulsion fuel at different ratios systematically. The entire study was conducted in the diesel engine using the three fuels, namely, neat BD, Canola BD emulsion fuel, and alumina nanoparticle blended Canola emulsion fuels consecutively. The experimental results revealed a considerable improvement in the brake thermal efficiency (BTE) for the alumina blended Canola emulsion fuels compared with that of neat Canola BD and Canola BD emulsion fuel. At the full load, the BTE observed for the Canola BD fuel was 30.7%, whereas it was 27.81% and 31.6% for the Canola BD emulsion fuel and alumina nanoparticle blended emulsion fuel, respectively. The use of a nanoparticle blended BD fuel reduced the hydrocarbon (HC) and carbon monoxide (CO) emissions but increased oxides of nitrogen (NOx) emissions due to the increased oxygen content in the BD fuel but it was reduced in nanoparticle blended fuel. The smoke emission was reduced by 50% with the use of the nanoparticle blended emulsion fuel.


2021 ◽  
Vol 9 (1) ◽  
pp. 436-443
Author(s):  
M.Kannan, R.Balaji, R.T Sarath Babu, Chandrakant B. Shende, Ashish Selokar

The primary objective of this study is to discover the effects of injection timing on performance, emission and combustion characteristics effect of advanced and retarded injection timing of the engine fuelled with mahua oil biodiesel blends. The engine performance, combustion and emission characteristics of the mahua oil biodiesel blends (B20, B40, B60, B80and B100) are investigated in this experimentation without any modification of the diesel engine. At this advanced pressure t he efficiency of engine by means of CO, Unburned HC gases and smoke emissions with higher oxides of nitrogen was observed compared to diesel. The obtained results are compared with a neat diesel and mahua oil biodiesel blends are shown through the graphs. From this study, identifies optimum fuel blend of this work. Thus, the combustion of duration is similar in all variance in pressure. This research paved a way to bio-diesel in mahua oil mixture and draws best outcome in emission less and to maintain eco-friendly environment.  


Author(s):  
Masoud Iranmanesh ◽  
J. P. Subrahmanyam ◽  
M. K. G. Babu

In this investigation, tests were conducted on a single cylinder DI diesel engine fueled with neat diesel and biodiesel as baseline fuel with addition of 5 to 20% DEE on a volume basis in steps of 5 vol.% as supplementary oxygenated fuel to analyze the simultaneous reduction of smoke and oxides of nitrogen. Some physicochemical properties of test fuels such as heating value, viscosity, specific gravity and distillation profile were also determined in accordance to the ASTM standards. The results obtained from the engine tests have shown a significant reduction in NOX emissions especially for biodiesel and a little decrease in smoke of DEE blends compared with baseline fuels. A global overview of the results has shown that the 5% DEE-Diesel fuel and 15% DEE-Biodiesel blend are the optimal blend based on performance and emission characteristics.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1489
Author(s):  
R. S. Gavhane ◽  
A. M. Kate ◽  
Manzoore Elahi M. Soudagar ◽  
V. D. Wakchaure ◽  
Sagar Balgude ◽  
...  

The present study examines the effect of silicon dioxide (SiO2) nano-additives on the performance and emission characteristics of a diesel engine fuelled with soybean biodiesel. Soybean biofuel was prepared using the transesterification process. The morphology of nano-additives was studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The Ultrasonication process was used for the homogeneous blending of nano-additives with biodiesel, while surfactant was used for the stabilisation of nano-additives. The physicochemical properties of pure and blended fuel samples were measured as per ASTM standards. The performance and emissions characteristics of different fuel samples were measured at different loading conditions. It was found that the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) increased by 3.48–6.39% and 5.81–9.88%, respectively, with the addition of SiO2 nano-additives. The carbon monoxide (CO), hydrocarbon (HC) and smoke emissions for nano-additive added blends were decreased by 1.9–17.5%, 20.56–27.5% and 10.16–23.54% compared to SBME25 fuel blends.


Author(s):  
Yaodong Wang ◽  
Neil Hewitt ◽  
Philip Eames ◽  
Shengchuo Zeng ◽  
Jincheng Huang ◽  
...  

Experimental tests have been carried out to evaluate the performance and emissions characteristics of a diesel engine when fuelled by blends of 25% vegetable oil with 75% diesel fuel, 50% vegetable oil with 50% diesel fuel, 75% vegetable oil with 25% diesel fuel, and 100% vegetable oil, compared with the performance, emissions characteristics of 100% diesel fuel. The series of tests were conducted and repeated six times using each of the test fuels. 100% of ordinary diesel fuel was also used for comparison purposes. The engine worked at a fixed speed of 1500 r/min, but at different loads respectively, i.e. 0%, 25%, 50%, 75% and 100% of the engine load. The performance and the emission characteristics of exhaust gases of the engine were compared and analyzed. The experimental results showed that the carbon monoxide (CO) emission from the vegetable oil and vegetable oil/diesel fuel blends were nearly all higher than that from pure diesel fuel at the engine 0% load to 75% load. Only at the 100% engine load point, the CO emission of vegetable oil and vegetable oil/diesel fuel blends was lower than that of diesel fuel. The hydrocarbon (HC) emission of vegetable oil and vegetable/diesel fuel blends were lower than that of diesel fuel, except that 50% of vegetable oil and 50% diesel fuel blend was a little higher than that of diesel fuel. The oxides of nitrogen (NOx) emission of vegetable oil and vegetable oil/diesel fuel blends, at the range of tests, were lower than that of diesel fuel.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. Savariraj ◽  
T. Ganapathy ◽  
C. G. Saravanan

Biodiesel derived from nonedible feed stocks such as Mahua, Jatropha, Pongamia are reported to be feasible choices for developing countries including India. This paper presents the results of investigation of performance and emissions characteristics of diesel engine using Mahua biodiesel. In this investigation, the blends of varying proportions of Mahua biodiesel and diesel were prepared, analyzed compared with the performance of diesel fuel, and studied using a single cylinder diesel engine. The brake thermal efficiency, brake-specific fuel consumption, exhaust gas temperatures, Co, Hc, No, and smoke emissions were analyzed. The tests showed decrease in the brake thermal efficiencies of the engine as the amount of Mahua biodiesel in the blend increased. The maximum percentage of reduction in BTE (14.3%) was observed for B-100 at full load. The exhaust gas temperature with the blends decreased as the proportion of Mahua increases in the blend. The smoke, Co, and No emissions of the engine were increased with the blends at all loads. However, Hc emissions of Mahua biodiesels were less than that of diesel.


In this contemporary era it is mandatory to increasing the usage of non edible biodiesel to replace the fossil fuels. This non edible biodiesels are produced from vegetable oils which is clean burning and renewable. This paper deals with the performance and emission characteristics on diesel engine with blends of Castor oil as biodiesel. Castor oil biodiesel is prepared by the use of adding 1% v/v H2SO4 after the transesterification process. The engine tests were performed with various blends B20, B40, B60 on a single cylinder, 4-stroke, diesel engine. The result shows Higher performance and lower emissions for B20 than the diesel and other blends. The brake thermal efficiency is higher than the diesel and CO, HC and NOX emissions were 22%, 8.4%, and 21% lesser than that of diesel.


Author(s):  
V. Hariram ◽  
J. Godwin John ◽  
Subramanyeswara Rao ◽  
S. K. Baji Babavali ◽  
S. Muni Lokesh ◽  
...  

This study focuses on the conversion of chicken fat into chicken fat methyl ester (CFME) and its use in the diesel engine. Baseline fuel i.e., diesel and chicken fat biodiesel are the fuels tested to study their effect on the performance and emission characteristics of diesel engines. To enhance the performance and emission characteristics, ethanol up to 20% is added as an additive to the chicken fat biodiesel. The physiochemical properties revealed that the fuel blends properties are closer to the diesel fuel. The experimental investigations revealed that additive blended biodiesel enhanced the performance by reducing the brake-specific fuel consumption and increasing the brake thermal efficiency. Moreover, the emissions are considerably reduced by the additive blended chicken fat biodiesel. Therefore, chicken fat biodiesel can be considered as a substitute fuel to be used in the diesel engine without any modifications.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
S. Debbarma ◽  
R. D. Misra

The technology for use of biodiesels (up to 20%) as alternative fuel in diesel engines has already been established. In this regard, some suitable modification of biodiesel with appropriate additives may help in increasing the biodiesel component in the biodiesel fuel blends. In order to evaluate the effects of iron nanoparticles (INP) blended palm biodiesel (PB) on the performance and emission characteristics of diesel engine, an experimental investigation is carried out in a single cylinder diesel engine. Methodically, biodiesel prepared from palm oil and commercially available nanosized INP is used in this study. Iron nanoparticles are suspended in the biodiesel in proportions of 40 ppm to 120 ppm using an ultrasonicator. The intact study is conducted in the diesel engine using the four fuel samples, namely diesel, PB20, INP50PB30, and INP75PB30, consecutively. The addition of nano-additive has resulted in higher brake thermal efficiency (BTE) by 3% and break-specific energy consumption (BSEC) by 3.3%, compared to diesel fuel. The emission levels of carbon monoxide (∼56%) and NOx (∼4%) are appreciably reduced with the addition of INP. Increase of INP in the blend from 50 ppm to 75 ppm, BTE and BSEC tend to reduce, but CO and NOx emissions are reduced.


Sign in / Sign up

Export Citation Format

Share Document