Gravity loads and analysis of elevated water tanks of seismic zones in indian context-simulation comparisons

Author(s):  
Dasari Tirupathi ◽  
Kota Srinivasu

Water tanks are the capacity booths for putting away water. Raised water tanks are built to be able to deliver required head with the purpose that the water will movement affected by gravity the development exercise of water tanks is as antique as enlightened guy. The water tanks project has an firstrate want as it serves ingesting water for amazing populace from exceptional metropolitan urban groups to the little population dwelling in cities and towns. The smaller than ordinary project is led for a time of 15 days to have total all the way right down to earth information on unique tactics and issues appeared within the field. An change issue like construction factors, layout Parameters, information of Formwork, information of aid, process of Water treatment Plant and Execution had been controlled over the span of our smaller than regular undertaking."improved water tanks" via raising water tank, the enlargement upward push makes a conveyance strain at the tank outlet. The profile of water tanks begins offevolved with the utility parameters, consequently the type of materials applied and the form of water tank become directed by way of approach of those factors: 1. Vicinity of the water tank (inner, out of doors, over the floor or underground). 2. Volume of water tank need to preserve. 3. What the water may be utilized for? Four. Temperature of territory wherein might be located away, fear for solidifying. Five. Weight required conveying water. 6. How the water to be conveys to the water tank. 7. Wind and quake plan contemplations allow water tanks to endure seismic and excessive wind occasions


2015 ◽  
Vol 87 ◽  
pp. 32-46 ◽  
Author(s):  
R. Ghateh ◽  
M.R. Kianoush ◽  
W. Pogorzelski

2013 ◽  
Vol 51 ◽  
pp. 84-91 ◽  
Author(s):  
Uma Chaduvula ◽  
Deepam Patel ◽  
N. Gopalakrishnan

2016 ◽  
Vol 43 (7) ◽  
pp. 619-630 ◽  
Author(s):  
Mehdi Moslemi ◽  
Amir Reza Ghaemmaghami ◽  
M. Reza Kianoush

In this study, the dynamic behavior of elevated water tanks is investigated by performing a comprehensive parametric study on conical elevated tanks using the finite element technique. Through this study, a wide range of tank parameters and geometries typically found in practice is considered. To perform this parametric study, a parametric model capable of building any finite element models of a three-dimensional conical elevated tank with varying parameters is developed. As a result of this parametric study, pressure distribution graphs corresponding to both impulsive and convective hydrodynamic pressures can be generated by carrying out spectral analysis. These pressure graphs can be utilized simply in design applications for liquid-filled conical elevated tanks. The accuracy of the proposed pressure graphs is verified by comparing these results with those calculated using the previously verified finite element time-history analysis and also the “current practice”.


2021 ◽  
Author(s):  
Maria Iovino ◽  
Raffaele Di Laora ◽  
Luca de Sanctis

AbstractPile foundations supporting tall structures, such as wind turbines, chimneys, silos, elevated water tanks or bridge piers, are subjected during their life span to remarkably eccentric loads. These may lead to significant rotations which, however, cannot exceed the limiting values corresponding to the safe operation of the structure. A physically motivated mathematical framework aimed at the prediction of the serviceability performance of such kind of structures is herein presented and discussed. Piles are idealized as uniaxial nonlinear elements characterized by two yielding loads, one in compression and one in uplift, while pile-to-pile interaction effects are modeled by means of superposition, through an approximate solution. The axial load–moment capacity of the pile group is preliminary determined from a recent closed form, exact solution based on upper and lower bound theorems, allowing the analysis to be performed under load control. The model is capable of accounting for the dependence of the moment–rotation response from the dead load of the structure and the ‘coupling effect’ between generalized loads and displacements. The prediction performance of the proposed calculation method is validated against both numerical and experimental benchmarks. Finally, a parametric study allowed to assess the importance of pile-to-pile interaction on the foundation response under eccentric loads.


2019 ◽  
Vol 8 (3) ◽  
pp. 2044-2049

Reinforced concrete elevated water tanks supported on shaft type staging system are popularly constructed now a days for storage of water for water supply schemes. If slip form is used for casting of the shaft staging, the water towers generally require lesser time for construction. Elevated water tanks are top heavy structure especially in the tank full condition. It is often a critical question in structural design that what should be the proper structural model adopted for design of such class of structure. Should the shaft be designed as a hollow cylindrical column subjected to axial compression or is it essentially a R.C. cylindrical shell subjected to membrane forces under axial compression. To better understand it is proposed to cast such R.C. shells and after water curing for 28 days shall be subjected to axial compressive load in a compressive strength testing machine. The failure pattern of the shells shall be observed critically to get a proper understanding of behavior of such R.C shaft supported elevated water tank structures.


Sign in / Sign up

Export Citation Format

Share Document