scholarly journals Innovative Experimentation on Hollow Cylindrical Shells of Reinforced Concrete under Axial Compressive Load

2019 ◽  
Vol 8 (3) ◽  
pp. 2044-2049

Reinforced concrete elevated water tanks supported on shaft type staging system are popularly constructed now a days for storage of water for water supply schemes. If slip form is used for casting of the shaft staging, the water towers generally require lesser time for construction. Elevated water tanks are top heavy structure especially in the tank full condition. It is often a critical question in structural design that what should be the proper structural model adopted for design of such class of structure. Should the shaft be designed as a hollow cylindrical column subjected to axial compression or is it essentially a R.C. cylindrical shell subjected to membrane forces under axial compression. To better understand it is proposed to cast such R.C. shells and after water curing for 28 days shall be subjected to axial compressive load in a compressive strength testing machine. The failure pattern of the shells shall be observed critically to get a proper understanding of behavior of such R.C shaft supported elevated water tank structures.

Author(s):  
Mr. Rohit Kiran Chaudhari

It was discovered that reinforced concrete elevated water tanks with frame staging outperformed reinforced concrete elevated water tanks with shaft staging in terms of seismic resistance. These can be due to the frame staging's seismic energy absorption capability. As a result, the primary goal of this research is to better understand the seismic behavior and performance characteristics of elevated water tanks with frame staging. Furthermore, when compared to other shapes, circular tanks have the smallest surface area for a given tank size. As a result, the amount of material needed for a circular water tank is less than for other shapes. As a result, a circular water tank was chosen, and seismic analysis of elevated RC circular water tanks was carried out according to IITK-GSDMA guidelines, with the behavior of the water tank analysed for various parameters such as zone factor, soil condition, and different staging heights. SAP 2000 was used to determine the structure's modal characteristics (mode shapes and modal participation mass ratio).


2021 ◽  
Vol 16 (1) ◽  
pp. 51-60
Author(s):  
Sandesh Sagar Tripathi ◽  
Kamal Bahadur Thapa

Most of the codal provisions used worldwide for the design of elevated water tanks incorporates the nonlinear response through reduction factor that considers overstrength, ductility and redundancy. The majority of these codes provide a value which incorporates the demand of their geological condition and construction industry. In Nepal, there is lack of own guidelines and codes for the seismic design of elevated water tanks. In the present work, seismic performance of elevated reinforced concrete (RC) Intze type water tank is evaluated and value of the response reduction factor (R) for the design of such tank is determined. In this research work 34 models of elevated reinforced water tank were analyzed using SAP 2000 to evaluate the seismic performance with varying tank filling condition and staging height for 450 cumec and 225 cumec capacity. Based on the results, it is concluded that single value of response reduction factor cannot be justified for all heights and capacity of elevated RC water tank. So, for economical design purpose, estimation of response reduction factor with exact analysis is preferred.


Water tanks are the capacity booths for putting away water. Raised water tanks are built to be able to deliver required head with the purpose that the water will movement affected by gravity the development exercise of water tanks is as antique as enlightened guy. The water tanks project has an firstrate want as it serves ingesting water for amazing populace from exceptional metropolitan urban groups to the little population dwelling in cities and towns. The smaller than ordinary project is led for a time of 15 days to have total all the way right down to earth information on unique tactics and issues appeared within the field. An change issue like construction factors, layout Parameters, information of Formwork, information of aid, process of Water treatment Plant and Execution had been controlled over the span of our smaller than regular undertaking."improved water tanks" via raising water tank, the enlargement upward push makes a conveyance strain at the tank outlet. The profile of water tanks begins offevolved with the utility parameters, consequently the type of materials applied and the form of water tank become directed by way of approach of those factors: 1. Vicinity of the water tank (inner, out of doors, over the floor or underground). 2. Volume of water tank need to preserve. 3. What the water may be utilized for? Four. Temperature of territory wherein might be located away, fear for solidifying. Five. Weight required conveying water. 6. How the water to be conveys to the water tank. 7. Wind and quake plan contemplations allow water tanks to endure seismic and excessive wind occasions


2014 ◽  
Vol 633-634 ◽  
pp. 1033-1036
Author(s):  
Le Zhou ◽  
Xiao Mei Nie ◽  
Yun Hao Bai

With the improvement of requirements for the building, and the effects of various factors for some existing steel structure building during the long-term service process, structural function is damaged, which requires reinforcement for existing structures to meet the requirements of its use of the function. This paper systematically introduces the research and application of steel structure member on strengthening aspects, which is prepared for the research of steel column reinforced by enclosed reinforced concrete under axial compression with initial compressive load. According to development and characteristics of steel columns reinforced by enclosed reinforced concrete under axial compression, this paper analyzes the common working mechanism of steel structure and concrete after reinforcement, and introduces the calculation method and its engineering application in our country.


2019 ◽  
Vol 8 (4) ◽  
pp. 5551-5554

During post-earthquake requirement the staging of elevated water tanks are considered as essential structures. Failure of staging leads to collapse of watertank so required to control the vibration of staging. In This paper elevated circular tank supported with frame was modeled to control the vibration of staging. Non-linear dynamic analysis (time-history analysis) was performed on model by using SAP2000 software to study the seismic behaviour. The additional dissipation of energy occurs by using damper constitute an effective technique for the earthquake reduction of staging members and In this study an attempt has been made to use the X-plate metallic steel damper for reducing the seismic response.


2012 ◽  
Vol 19 (5) ◽  
pp. 903-914
Author(s):  
H.M. Lopes ◽  
C.S. Oliveira

Before establishing the priority settings for the reduction of seismic risk of water supply infrastructures, it is necessary to understand the dynamic behavior of elevated water tanks, which are components of those infrastructures. Among other information, the main frequencies of vibration of these structures must be estimated and the analytical models used in their analysis and design should reproduce the frequency values obtained by in-situ dynamic tests. This work focuses exclusively on reinforced concrete (RC) elevated water tanks (200–750 m^3 of water at heights of 30–40 m), which are very common structures in the water supply systems in Portugal since the mid XXth century. This type of structures can also be seen in many regions around the world. First, a nationwide survey was conducted to determine the most common typologies in the country in terms of structural layout. Second, an in-situ campaign using ambient vibration as input was performed for a group of selected structures to determine the main frequencies of vibration and to identify modal shapes and damping values. Third, a finite element model of several different typologies was developed using the water simply as a concentrated mass at the top; the elastic properties of the model of the structure including the foundation were calibrated, so that the frequencies of various mode shapes obtained by the analytical model would match the frequencies of the real structure. Finally, an expression was derived to estimate the fundamental frequency of a group of elevated water tank typologies based on the total mass at the top of the supporting structure, which include the water, the global lateral stiffness, and the height of the tank. This study, providing important information on the frequencies of vibration of RC-elevated water tanks, contributes in a definite way to the analysis and design of such water tanks.


2018 ◽  
Vol 38 ◽  
pp. 03035
Author(s):  
Ji Zhong Wang ◽  
Lu Cheng ◽  
Xin Pei Wang

A new column of FRP composite tube confined steel-reinforced concrete (FTCSRC) column was proposed. This paper elaborates on laboratorial and analytical studies on the behavior of FCTSRC columns subjected to axial compressive load. Eight circular FTCSRC stub columns and one circular steel tube confined concrete (STCC) stub column were tested to investigate the failure mode and axial compression performance of circular FTCRSC columns. Parametric analysis was implemented to inquire the influence of confinement material (CFRP-steel tube or CFRP-GFRP tube), internal steel and CFRP layers on the ultimate load capacity. CFRP-steel composite tube was composed of steel tube and CFRP layer which was wrapped outside the steel tube, while CFRP-GFRP composite tube was composite of GFRP tube and CFRP layer. The test results indicate that the confinement effect of CFRP-steel tube is greatly superior to CFRP-GFRP tube. The ductility performance of steel tube confined high-strength concrete column can be improved obviously by encasing steel in the core concrete. Furthermore, with the increase in the layers of FRP wraps, the axial load capacity increases greatly.


Sign in / Sign up

Export Citation Format

Share Document