Numerical analysis of flow patterns maps in horizontal pipes with variation of inclination angles in a collector/evaporator of a DX-SAHP

Author(s):  
William Quitiaquez ◽  
Alex Herrera ◽  
C.A. Isaza-Roldán ◽  
Michael Mena ◽  
César Nieto-Londoño ◽  
...  
2021 ◽  
Author(s):  
Aram Parsa

Experiments on-board the International Space Station experience a convective flow due to the oscillatory g-jitters induced by several sources such as crew activities, mechanical systems, thrusters firing, spacecraft docking, etc. Although g-jitter seems to have a major impact on diffusion-related experiments in Space, very few experimental studies have addressed this topic. This study examined the effect of oscillatory g-jitters on transport processes (fluid flow, heat transfer and mass transfer). Cubic rigid cells filled with water and isopropanol at different concentrations were subjected to thermal gradients and forced vibrations. The cells were exposed to different levels of vibration in terms of frequency and amplitude, which were applied perpendicular to the temperature gradient. The full transient Navier Stokes equations coupled with the mass and heat transfer formulas were solved numerically using the control volume technique. The physical properties of the fluid mixture such as the density were determined using two different models. The effect of different levels of vibration on the flow was analysed and the results were compared in a benchmark study with other scientific groups. The effect of the diffusion coefficients variation and other physical properties on the temperature and concentration distribution was compared to those results obtained with constant diffusion coefficients. Results show that use of variable physical properties in the modelling produces different flow patterns and component concentration. By examining different flow patterns, it was found that the effect of using variable coefficients is much more significant in the cases with high Rayleigh vibration that result in strong flow when compared with numerical analysis using constant variables. The numerical analysis was also performed for the actual experiment on board the International Space Station. The same trend was seen for both the numerical and experimental results. However, the separation of components was higher in the experiment in comparison with the numerical analysis. This was discussed in detail for various scenarios in terms of the applied frequency and amplitude. Recommendations are made according to the findings from this study for the improvement of accuracy in the numerical and experimental analyses of future diffusion experiments in Space.


2021 ◽  
Author(s):  
Aram Parsa

Experiments on-board the International Space Station experience a convective flow due to the oscillatory g-jitters induced by several sources such as crew activities, mechanical systems, thrusters firing, spacecraft docking, etc. Although g-jitter seems to have a major impact on diffusion-related experiments in Space, very few experimental studies have addressed this topic. This study examined the effect of oscillatory g-jitters on transport processes (fluid flow, heat transfer and mass transfer). Cubic rigid cells filled with water and isopropanol at different concentrations were subjected to thermal gradients and forced vibrations. The cells were exposed to different levels of vibration in terms of frequency and amplitude, which were applied perpendicular to the temperature gradient. The full transient Navier Stokes equations coupled with the mass and heat transfer formulas were solved numerically using the control volume technique. The physical properties of the fluid mixture such as the density were determined using two different models. The effect of different levels of vibration on the flow was analysed and the results were compared in a benchmark study with other scientific groups. The effect of the diffusion coefficients variation and other physical properties on the temperature and concentration distribution was compared to those results obtained with constant diffusion coefficients. Results show that use of variable physical properties in the modelling produces different flow patterns and component concentration. By examining different flow patterns, it was found that the effect of using variable coefficients is much more significant in the cases with high Rayleigh vibration that result in strong flow when compared with numerical analysis using constant variables. The numerical analysis was also performed for the actual experiment on board the International Space Station. The same trend was seen for both the numerical and experimental results. However, the separation of components was higher in the experiment in comparison with the numerical analysis. This was discussed in detail for various scenarios in terms of the applied frequency and amplitude. Recommendations are made according to the findings from this study for the improvement of accuracy in the numerical and experimental analyses of future diffusion experiments in Space.


2020 ◽  
Vol 27 (8) ◽  
pp. 2353-2366
Author(s):  
Run-ping Niu ◽  
Da-qing Kuang ◽  
Shi-zheng Wang ◽  
Xiao-yi Chen

Author(s):  
Hong-Quan Zhang ◽  
Qian Wang ◽  
Cem Sarica ◽  
James P. Brill

A unified hydrodynamic model is developed for predictions of flow pattern transitions, pressure gradient, liquid holdup and slug characteristics in gas-liquid pipe flow at different inclination angles from −90 to 90 deg. The model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. By use of the entire film zone as the control volume, the momentum exchange between the slug body and the film zone is introduced into the momentum equations for slug flow. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. Significant effort has been made to eliminate discontinuities among the closure relationships through careful selection and generalization. The flow pattern classification is also simplified according to the hydrodynamic characteristics of two-phase flow.


1984 ◽  
Vol 106 (1) ◽  
pp. 109-115 ◽  
Author(s):  
H. Inaba ◽  
T. Fukuda

An experimental investigation pertaining to the effect of the density inversion of water on steady natural convective flow patterns and heat transfer in an inclined rectangular cavity whose two opposing walls are kept at different temperatures is carried out. Water as a testing fluid has its maximum density at about 4 °C. The temperature of one wall is maintained at 0 °C, while that of the opposing hot wall is varied from 2 to 20 °C. Photographs of the flow patterns, temperature distribution in the water layer, and average Nusselt number are presented under various hot wall temperatures and inclination angles of the cavity. The present results could indicate that the density inversion of water has an influential effect on the natural convective heat transfer in the prescribed water layer. Moreover, the average Nusselt number is a peculiar function of the temperature difference between the cold and hot walls and inclination angle, unlike the previous results for common fluids without density inversion.


2021 ◽  
Vol 4 (1) ◽  
pp. 389-399
Author(s):  
S.V. Klishin ◽  

By the Discrete Element Method in a three-dimensional formulation, a numerical analysis of the areal coal discharge during the underground mining of thick flat coal seams using self-caving technology has been carried out. The kinematic flow patterns of mined rock depending on the number and location of the outlet openings are given, the zones of their mu-tual influence are determined. The change of coal extraction indicators depending on the num-ber of outlets and the distance between them are demonstrated.


Author(s):  
S. Alireza Hojati ◽  
Pedram Hanafizadeh

The flow patterns in two phase and multi-phase flows is a significant factor which influences many other parameters such as drag force, drag coefficient and pressure drop in pipe lines. One of the major streams in the gas and oil industries is oil-water two phase flow. The main flow patterns in oil-water flows are bubbly, slug, dual continuous, stratified and annular. In the present work flow patterns in two phase oil-water flow were investigated in a 0.5in diameter pipe with length of 2m. 3D simulation was used for this pipe and six types of mesh grid were used to investigate mesh independency of the simulation. The proposed numerical analyses were performed by a CFD package which is based both on volume of fluid (VOF) and Eulerian-Eulerian methods. The results showed that some flow patterns can be simulated better with VOF method and some other maybe in Eulerian-Eulerian method, so these two methods were compared with together for all flow patterns. The flow patterns may be a function of many parameters in flow. One of the important parameter which may affect flow patterns in pipe line is pipe inclination angle; therefore flow patterns in the different pipe inclination angles were investigated in two phase oil-water flow. The range of inclinations has been varied between −45 to +45 degree about the horizon. In the presented simulation oil is mixed with water via a circular hole at center of the pipe, the ratio of oil surface to water surface at entrance is 2/3 so water phase was considered as the main phase. Flow patterns were investigated for every angle of pipe and numerical results were compared with available experimental data for verification. Also the flow patterns simulated by numerical approaches were compared with available flow regime maps in the previous literatures. Finally, effect of pipe inclination angle and flow patterns on the pressure loss were investigated comprehensively.


Sign in / Sign up

Export Citation Format

Share Document