scholarly journals Chemically complex intermetallic alloys: A new frontier for innovative structural materials

2021 ◽  
Author(s):  
T. Yang ◽  
B.X. Cao ◽  
T.L. Zhang ◽  
Y.L. Zhao ◽  
W.H. Liu ◽  
...  
1986 ◽  
Vol 81 ◽  
Author(s):  
D. M. Shah ◽  
D. N. Duhl

AbstractMulticomponent nickel base intermetallics with the L12 structure were evaluated as high temperature structural materials. The compounds were based on the γ' composition of PWA 1480, a high strength single crystal nickel base superalloy. The best balance of properties in the compound was achieved with <111> oriented single crystals but no significant advantage could be demonstrated over the precipitation hardened superalloys. Insufficient impact resistance was a major deficiency of the L12 compounds. Other nickel base intermetallics were also evaluated but showed little advantage over superalloys.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


Author(s):  
Ian M. Anderson

B2-ordered iron aluminide intermetallic alloys exhibit a combination of attractive properties such as low density and good corrosion resistance. However, the practical applications of these alloys are limited by their poor fracture toughness and low room temperature ductility. One current strategy for overcoming these undesirable properties is to attempt to modify the basic chemistry of the materials with alloying additions. These changes in the chemistry of the material cannot be fully understood without a knowledge of the site-distribution of the alloying elements. In this paper, the site-distributions of a series of 3d-transition metal alloying additions in B2-ordered iron aluminides are studied with ALCHEMI.A series of seven alloys of stoichiometry Fe50AL45Me5, with Me = {Ti, V, Cr, Mn, Co, Ni, Cu}, were prepared with identical heating cycles. Microalloying additions of 0.2% B and 0.1% Zr were also incorporated to strengthen the grain boundaries, but these alloying additions have little influence on the matrix chemistry and are incidental to this study.


2005 ◽  
Vol 173 (4S) ◽  
pp. 86-86
Author(s):  
Donna Y. Deng ◽  
Matthew P. Rutman ◽  
Larissa V. Rodriguez ◽  
Shlomo Raz
Keyword(s):  

PsycCRITIQUES ◽  
2008 ◽  
Vol 53 (51) ◽  
Author(s):  
Sameet Kumar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document