scholarly journals Fluorescent protein complementation assays: new tools to study G protein-coupled receptor oligomerization and GPCR-mediated signaling

2011 ◽  
Vol 331 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Pierre-Alexandre Vidi ◽  
Karin F.K. Ejendal ◽  
Julie A. Przybyla ◽  
Val J. Watts
2002 ◽  
Vol 156 (4) ◽  
pp. 665-676 ◽  
Author(s):  
Francesca Santini ◽  
Ibragim Gaidarov ◽  
James H. Keen

Nonvisual arrestins (arr) modulate G protein–coupled receptor (GPCR) desensitization and internalization and bind to both clathrin (CL) and AP-2 components of the endocytic coated pit (CP). This raises the possibility that endocytosis of some GPCRs may be a consequence of arr-induced de novo CP formation. To directly test this hypothesis, we examined the behavior of green fluorescent protein (GFP)-arr3 in live cells expressing β2-adrenergic receptors and fluorescent CL. After agonist stimulation, the diffuse GFP-arr3 signal rapidly became punctate and colocalized virtually completely with preexisting CP spots, demonstrating that activated complexes accumulate in previously formed CPs rather than nucleating new CP formation. After arr3 recruitment, CP appeared larger: electron microscopy analysis revealed an increase in both CP number and in the occurrence of clustered CPs. Mutant arr3 proteins with impaired binding to CL or AP-2 displayed reduced recruitment to CPs, but were still capable of inducing CP clustering. In contrast, though constitutively present in CPs, the COOH-terminal moiety of arr3, which contains CP binding sites but lacks receptor binding, did not induce CP clustering. Together, these results indicate that recruitment of functional arr3–GPCR complexes to CP is necessary to induce clustering. Latrunculin B or 16°C blocked CP rearrangements without affecting arr3 recruitment to CP. These results and earlier studies suggest that discrete CP zones exist on cell surfaces, each capable of supporting adjacent CPs, and that the cortical actin membrane skeleton is intimately involved with both the maintenance of existing CPs and the generation of new structures.


2013 ◽  
Vol 104 (2) ◽  
pp. 114a
Author(s):  
Ernesto E. Borrero ◽  
Davide Provasi ◽  
Signe Mathiasen ◽  
Dimitrios Stamou ◽  
Marta Filizola

2005 ◽  
Vol 16 (5) ◽  
pp. 2234-2247 ◽  
Author(s):  
Li Wang ◽  
Caius G. Radu ◽  
Li V. Yang ◽  
Laurent A. Bentolila ◽  
Mireille Riedinger ◽  
...  

Intracellular trafficking and spatial dynamics of membrane receptors critically regulate receptor function. Using microscopic and subcellular fractionation analysis, we studied the localization of the murine G protein-coupled receptor G2A (muG2A). Evaluating green fluorescent protein-tagged, exogenously expressed as well as the endogenous muG2A, we observed that this receptor was spontaneously internalized and accumulated in endosomal compartments, whereas its surface expression was enhanced and stabilized by lysophosphatidylcholine (LPC) treatment. Monensin, a general inhibitor of recycling pathways, blocked LPC-regulated surface localization of muG2A as well as muG2A-dependent extracellular signal-regulated kinase (ERK) activation and cell migration induced by LPC treatment. Mutation of the conserved DRY motif (R→ A) enhanced the surface expression of muG2A, resulting in its resistance to monensin inhibition of ERK activation. Our data suggest that intracellular sequestration and surface expression regulated by LPC, rather than direct agonistic activity control the signaling responses of murine G2A toward LPC.


Sign in / Sign up

Export Citation Format

Share Document