A mathematical model for the validation of the ground reaction force sensor in human gait analysis

Measurement ◽  
2012 ◽  
Vol 45 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Jorge Garza-Ulloa ◽  
Huiying Yu ◽  
Thompson Sarkodie-Gyan
2017 ◽  
Vol 6 (02) ◽  
pp. 125
Author(s):  
Flaviana Catherine ◽  
Risti Suryantari

<pre>Humans do regular physical activities such as running. Gait is forward  propulsion of the human body using lower extremities as a thrust. Humans gait pattern is characterized by their limbs movement in terms of velocity, ground reaction force, work, kinetic energy and potential energy cycle . Human gait analysis is used to assess, to plan, and to deliver the treatment for individuals based on the conditions that affect their ability to move. Gait analysis is commonly used in running sport to improve the efficiency of athletes in running and to identify problems related to their posture or movement. The aim of this research is to do running gait analysis study of human, using force plate which equipped by track board. The benefit of this study is to provide information, ideas and new perspectives about running and its prevention over an injury. The main method that will be discussed in this study is system design of gait analysis with specific setting, hardware and software, in order to acquire data(s). </pre>


Author(s):  
Ítalo Rodrigues ◽  
Jadiane Dionisio ◽  
Rogério Sales Gonçalves

Author(s):  
Grazia Cicirelli ◽  
Donato Impedovo ◽  
Vincenzo Dentamaro ◽  
Roberto Marani ◽  
Giuseppe Pirlo ◽  
...  

Author(s):  
Shaoli Wu ◽  
Philip A. Voglewede

This paper develops an improvement to an existing forward dynamic human gait model. A human gait model was developed previously to assist virtual testing prostheses and orthoses. The model consists of a plant model and a controller model. The central tenet to the model is the model predictive control (MPC) algorithm, which is a highly robust controller. In the previous model, however, there are several drawbacks. First, the anthropometric and mechanical parameters in the parts of the model are specific to one person. Second, the simulation result of ground reaction force (GRF) is not realistic. In this paper, the anthropometric parameters are calculated based on commonly used models that approximate an average person’s size. As for the mechanical parameters, the spring and damper coefficients in the human joints and ground reaction force (GRF) system are estimated by using the parameter estimation module in MATLAB based on the experimental subject data. The paper concludes with a simulation results between the new improved model and the previous developed model.


2021 ◽  
Author(s):  
Xinyu Lv ◽  
Shengying Wang ◽  
Tao Chen ◽  
Jing Zhao ◽  
Desheng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document