Product function correntropy and its application in rolling bearing fault identification

Measurement ◽  
2017 ◽  
Vol 97 ◽  
pp. 88-99 ◽  
Author(s):  
Yunxiao Fu ◽  
Limin Jia ◽  
Yong Qin ◽  
Jie Yang
Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1560 ◽  
Author(s):  
Tomasz Ciszewski ◽  
Len Gelman ◽  
Andrew Ball

It is proposed, developed, investigated, and validated by experiments and modelling for the first time in worldwide terms new data processing technologies, higher order spectral multiple correlation technologies for fault identification for electromechanical systems via electrical data processing. Investigation of the higher order spectral triple correlation technology via modelling has shown that the proposed data processing technology effectively detects component faults. The higher order spectral triple correlation technology successfully applied for rolling bearing fault identification. Experimental investigation of the technology has shown, that the technology effectively identifies rolling bearing fault by electrical data processing at very early stage of fault development. Novel technology comparisons via modelling and experiments of the proposed higher order spectral triple correlation technology and the higher order spectra technology show the higher fault identification effectiveness of the proposed technology over the bicoherence technology.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 191
Author(s):  
Yi Zhang ◽  
Yong Lv ◽  
Mao Ge

The health condition of the rolling bearing seriously affects the operation of the whole mechanical system. When the rolling bearing parts fail, the time series collected in the field generally shows strong nonlinearity and non-stationarity. To obtain the faulty characteristics of mechanical equipment accurately, a rolling bearing fault detection technique based on k-optimized adaptive local iterative filtering (ALIF), improved multiscale permutation entropy (improved MPE), and BP neural network was proposed. In the ALIF algorithm, a k-optimized ALIF method based on permutation entropy (PE) is presented to select the number of ALIF decomposition layers adaptively. The completely average coarse-graining method was proposed to excavate more hidden information. The performance analysis of the simulation signal shows that the improved MPE can more accurately dig out the depth information of the time series, and the entropy value obtained is more consistent and stable. In the research application, rolling bearing time series are decomposed by k-optimized ALIF to obtain a certain number of intrinsic mode functions (IMFs). Then the improved MPE value of effective IMF is calculated and input into backpropagation (BP) neural network as the feature vector for automatic fault identification. The comparative analysis of simulation signals shows that this method can extract fault information effectively. At the same time, the experimental part shows that this scheme not only effectively extracts the fault features, but also realizes the classification and identification of different fault modes and faults of different degrees, which has a certain application prospect in the research and application direction of rolling bearing fault identification.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1094 ◽  
Author(s):  
Lanjun Wan ◽  
Hongyang Li ◽  
Yiwei Chen ◽  
Changyun Li

To effectively predict the rolling bearing fault under different working conditions, a rolling bearing fault prediction method based on quantum particle swarm optimization (QPSO) backpropagation (BP) neural network and Dempster–Shafer evidence theory is proposed. First, the original vibration signals of rolling bearing are decomposed by three-layer wavelet packet, and the eigenvectors of different states of rolling bearing are constructed as input data of BP neural network. Second, the optimal number of hidden-layer nodes of BP neural network is automatically found by the dichotomy method to improve the efficiency of selecting the number of hidden-layer nodes. Third, the initial weights and thresholds of BP neural network are optimized by QPSO algorithm, which can improve the convergence speed and classification accuracy of BP neural network. Finally, the fault classification results of multiple QPSO-BP neural networks are fused by Dempster–Shafer evidence theory, and the final rolling bearing fault prediction model is obtained. The experiments demonstrate that different types of rolling bearing fault can be effectively and efficiently predicted under various working conditions.


Sign in / Sign up

Export Citation Format

Share Document