Elimination of a measurement problem: A robust prediction model for missing eigenvector value to assess earthquake induced out-of-plane failure of infill wall

Measurement ◽  
2019 ◽  
Vol 144 ◽  
pp. 88-104 ◽  
Author(s):  
Onur Onat ◽  
Burak Yön
Author(s):  
Karunesh Makker ◽  
Prince Patel ◽  
Hrishikesh Roy ◽  
Sonali Borse

Stock market is a very volatile in-deterministic system with vast number of factors influencing the direction of trend on varying scales and multiple layers. Efficient Market Hypothesis (EMH) states that the market is unbeatable. This makes predicting the uptrend or downtrend a very challenging task. This research aims to combine multiple existing techniques into a much more robust prediction model which can handle various scenarios in which investment can be beneficial. Existing techniques like sentiment analysis or neural network techniques can be too narrow in their approach and can lead to erroneous outcomes for varying scenarios. By combing both techniques, this prediction model can provide more accurate and flexible recommendations. Embedding Technical indicators will guide the investor to minimize the risk and reap better returns.


2014 ◽  
Vol 6 (6) ◽  
pp. 689-713 ◽  
Author(s):  
Fillitsa Karantoni ◽  
Georgios Tsionis ◽  
Foteini Lyrantzaki ◽  
Michael N. Fardis

2021 ◽  
Vol 20 (2) ◽  
pp. 371-381
Author(s):  
Atabak Pourmohammad Sorkhab ◽  
◽  
Mesut Küçük ◽  
Ali Sari ◽  
◽  
...  

In this study, the out-of-plane response of infill walls that are widely used in Turkey and the surrounding regions were experimentally investigated. Several out-of-plane wall tests were performed in the laboratory, with the walls specimens produced with lateral hollow clay bricks (LHCB) and different mortar qualities. The walls were tested in their out-of-plane (OOP) direction under static load conditions and evaluated based on the load-bearing and energy dissipation capacities, crack propagations, mortar strengths, and initial stiffnesses. These walls are experimentally investigated to understand the effects of the mortar strength on the infill wall structural behaviors and to assess the effectiveness of the out-of-plane strength formulations. It was found that when the mortar strength is low, the first major crack occurs at the mortar, however, because of the arch mechanism efficiency in this situation the OOP load-carrying and energy dissipation capacities of unreinforced walls can be significantly increased. When the first major crack in the wall occurs in the brick itself, the arc mechanism is provided with delicate sections in the brick, which leads to strength decreasing in the walls. In this case, excessive deviations occur in the out-of-plane strength formulations estimates. This study shows that the arc mechanism, the damage start region and progress can change significantly unreinforced masonry (URM) infill walls behaviors.


Author(s):  
Ziad Azzi ◽  
Caesar Abi Shdid

The majority of new and existing building inventories in the Middle East consist of reinforced concrete skeletal structures with outer shells composed of unreinforced masonry infill walls. In the absence of any mandatory seismic design requirements, these buildings will sustain catastrophic damage when exposed to high seismic activity. Investigating the behavior of such infill walls when exposed to ground motion is therefore an important topic. Experimental tests using shake table out-of-plane ground motion of the 1940 El Centro earthquake displacement are conducted on 3:10 scaled specimens of a single story reinforced concrete frame with a masonry infill wall in between. The test specimens are constructed with the same materials and construction practices commonly used in the region. Displacements and strains are compared with a finite element model of the frame. Moreover, the observed overall behavior of the infill is compared to that of the computer model. The recorded strains in the mortar joints exceeded cracking limits, whereas the overall stability of the wall in out-of-plane bending was not compromised. Recommendations on the use of these structural elements are formulated.


2015 ◽  
Vol 44 (14) ◽  
pp. 2529-2549 ◽  
Author(s):  
Alexandre A. Costa ◽  
Andrea Penna ◽  
António Arêde ◽  
Aníbal Costa

1981 ◽  
Vol 8 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Anjan Ghosh ◽  
Glenn Morris

The consecutive testing to failure of four test joints in each of two identical 7.3 m span × 1.8 m deep tubular steel trusses with cropped webs is described. The behavior of each of the test joints is discussed and compared to that of similar joints previously tested as isolated specimens. Following large chord-face deformations and bending of the webs in the truss plane, failure occurs by out-of-plane buckling of the compression web at those test joints with slender webs, or by yielding and tearing of the tension web at those with stocky webs. Stiffnesses are in close agreement for corresponding truss and isolated joints. Strengths of the truss joints are from 0–23% lower than those of the isolated joint specimens. Joint deformation contributes less than 5% to truss deflection.


2020 ◽  
Vol 36 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Bozo Vazic ◽  
Erkan Oterkus ◽  
Selda Oterkus

ABSTRACTWhen dealing with ice structure interaction modeling, such as designs for offshore structures/icebreakers or predicting ice cover’s bearing capacity for transportation, it is essential to determine the most important failure modes of ice. Structural properties, ice material properties, ice-structure interaction processes, and ice sheet geometries have significant effect on failure modes. In this paper two most frequently observed failure modes are studied; splitting failure mode for in-plane failure of finite ice sheet and out-of-plane failure of semi-infinite ice sheet. Peridynamic theory was used to determine the load necessary for inplane failure of a finite ice sheet. Moreover, the relationship between radial crack initiation load and measured out-of-plane failure load for a semi-infinite ice sheet is established. To achieve this, two peridynamic models are developed. First model is a 2 dimensional bond based peridynamic model of a plate with initial crack used for the in-plane case. Second model is based on a Mindlin plate resting on a Winkler elastic foundation formulation for out-of-plane case. Numerical results obtained using peridynamics are compared against experimental results and a good agreement between the two approaches is obtained confirming capability of peridynamics for predicting in-plane and out-of-plane failure of ice sheets.


Sign in / Sign up

Export Citation Format

Share Document