Behavior of tubular steel trusses with cropped webs

1981 ◽  
Vol 8 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Anjan Ghosh ◽  
Glenn Morris

The consecutive testing to failure of four test joints in each of two identical 7.3 m span × 1.8 m deep tubular steel trusses with cropped webs is described. The behavior of each of the test joints is discussed and compared to that of similar joints previously tested as isolated specimens. Following large chord-face deformations and bending of the webs in the truss plane, failure occurs by out-of-plane buckling of the compression web at those test joints with slender webs, or by yielding and tearing of the tension web at those with stocky webs. Stiffnesses are in close agreement for corresponding truss and isolated joints. Strengths of the truss joints are from 0–23% lower than those of the isolated joint specimens. Joint deformation contributes less than 5% to truss deflection.

2014 ◽  
Vol 6 (6) ◽  
pp. 689-713 ◽  
Author(s):  
Fillitsa Karantoni ◽  
Georgios Tsionis ◽  
Foteini Lyrantzaki ◽  
Michael N. Fardis

2015 ◽  
Vol 44 (14) ◽  
pp. 2529-2549 ◽  
Author(s):  
Alexandre A. Costa ◽  
Andrea Penna ◽  
António Arêde ◽  
Aníbal Costa

2020 ◽  
Vol 36 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Bozo Vazic ◽  
Erkan Oterkus ◽  
Selda Oterkus

ABSTRACTWhen dealing with ice structure interaction modeling, such as designs for offshore structures/icebreakers or predicting ice cover’s bearing capacity for transportation, it is essential to determine the most important failure modes of ice. Structural properties, ice material properties, ice-structure interaction processes, and ice sheet geometries have significant effect on failure modes. In this paper two most frequently observed failure modes are studied; splitting failure mode for in-plane failure of finite ice sheet and out-of-plane failure of semi-infinite ice sheet. Peridynamic theory was used to determine the load necessary for inplane failure of a finite ice sheet. Moreover, the relationship between radial crack initiation load and measured out-of-plane failure load for a semi-infinite ice sheet is established. To achieve this, two peridynamic models are developed. First model is a 2 dimensional bond based peridynamic model of a plate with initial crack used for the in-plane case. Second model is based on a Mindlin plate resting on a Winkler elastic foundation formulation for out-of-plane case. Numerical results obtained using peridynamics are compared against experimental results and a good agreement between the two approaches is obtained confirming capability of peridynamics for predicting in-plane and out-of-plane failure of ice sheets.


2013 ◽  
Vol 353-356 ◽  
pp. 1836-1845
Author(s):  
Zhi Xiong Chen ◽  
Ying Hu

The response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. Also the out-of-plane failure of the infill can cause heavy casualties. In this article, an improved numerical model for the simulation of the in-plane and out-of-plane behaviour of masonry infill is proposed. First, the proposed model is presented. This is an upgrading equivalent strut model composed of two beam-column type elements, with a node at the mid-span assigned a mass in the in-plane and the out-of-plane direction to account for the inertial forces in both directions. Second, the main results of the calibration analyses obtained with two experiments are presented and discussed.


2021 ◽  
Vol 13 (20) ◽  
pp. 11383
Author(s):  
Linda Giresini ◽  
Claudia Casapulla ◽  
Pietro Croce

This paper presents an innovative methodology to assess the economic and environmental impact of integrated interventions, namely solutions that improve both structural and energy performance of existing masonry buildings, preventing out-of-plane modes and increasing their energy efficiency. The procedure allows the assessment of the environmental and the economic normalized costs of each integrated intervention, considering seismic and energy-saving indicators. In addition, the work introduces in relative or absolute terms two original indicators, associated with seismic displacement and thermal transmittance. The iso-cost curves so derived are thus a powerful tool to compare alternative solutions, aiming to identify the most advantageous one. In fact, iso-cost curves can be used with a twofold objective: to determine the optimal integrated intervention associated with a given economic/environmental impact, or, as an alternative, to derive the pairs of seismic and energy performance indicators associated with a given budget. The analysis of a somehow relevant case study reveals that small energy savings could imply excessive environmental impacts, disproportionally increasing the carbon footprint characterizing each intervention. Iso-cost curves in terms of absolute indicators are more suitable for assessing the effects of varying acceleration demands on a given building, while iso-cost curves in terms of relative indicators are more readable to consider a plurality of cases, located in different sites. The promising results confirm the effectiveness of the proposed method, stimulating further studies.


2018 ◽  
Vol 53 (5) ◽  
pp. 563-577 ◽  
Author(s):  
Kadir Bilisik ◽  
Nesrin S Karaduman ◽  
Erdal Sapanci

The effect of through-the-thickness stitching and incorporation of multiwalled carbon nanotubes (MWCNTs) on the flexural properties of three-dimensional (3D) carbon/epoxy composites was studied. The flexural strength of the carbon twill fabric composites was improved by stitching due largely to delamination suppression, whereas stitching negatively influenced the flexural strength of the carbon satin fabric composites due to stitch-induced irregularities and fiber breakages. The failure mode of the unstitched base (without MWCNTs) and unstitched nano-added structures involved fiber breakage, matrix cracking, and delamination, while the stitched base and stitched nano-added samples exhibited lateral matrix cracking, multiple warp, and stitch yarn breakages with less delamination compared with unstitched structures. The results showed that both stitching and the incorporation of MWCNTs improved the out-of-plane failure properties due largely to restricted delamination. Therefore, stitching and MWCNTs can effectively be used to increase the damage tolerance of carbon fiber/epoxy composite laminates.


Sign in / Sign up

Export Citation Format

Share Document