Electrochemical noise analysis of corrosion behaviour of asymmetric electrodes made of mild steel in NaHCO3 solutions at different NaCl concentrations

Measurement ◽  
2020 ◽  
Vol 155 ◽  
pp. 107501 ◽  
Author(s):  
R. Naghizade ◽  
M. Shahidi Zandi ◽  
S.M.A. Hosseini
2013 ◽  
Vol 66 ◽  
pp. 183-195 ◽  
Author(s):  
Anna Chen ◽  
Fahe Cao ◽  
Xiaoning Liao ◽  
Wenjuan Liu ◽  
Liyun Zheng ◽  
...  

2016 ◽  
Vol 8 (3) ◽  
pp. 1716-1735
Author(s):  
C. Kumar ◽  
A. John Amal Raj ◽  
S.K. Selvaraj

Human tear comes in contact with a number of instruments during operation in the eyes.  This results in a variety of undesirable effects such as corrosion and malfunction.  Corrosion behaviour of five metals, namely, mild steel (MS), mild steel coated with zinc (MS-Zn), Ni-Cr, Ni-Ti super elastic (Ni-Ti.SE), and SS 316 L in artificial tear solution has been studied by polarization study and AC impedance spectra.  The study reveals that the decreasing order of corrosion resistance in artificial tear solution is : Ni-Ti SE > Ni-Cr > SS 316 L > MS-Zn > MS.  The first three metals are better candidates and the first one is the best candidate for making instruments used in operation in the eyes, in presence of tears.


2004 ◽  
Vol 04 (03) ◽  
pp. R39-R55 ◽  
Author(s):  
G. MONTESPERELLI ◽  
G. GUSMANO

This paper gives an overview of the use of Electrochemical Noise (EN) for corrosion studying and monitoring. Since the quality and reliability of noise data are affected by a number of acquisition parameters, such as sampling interval, sampling duration, D.C. trend and instrumental noise, some experimental and practical aspects were discussed. The use of statistical parameters such as standard deviation, Pit Index and/or Localization Index and Noise Resistance to analyze noise data of corroding systems were examined. Many experimental applications of Electrochemical Noise Measurements on different metals and alloys were given. EN data have been compared with traditional electrochemical techniques. EN allowed to characterize the corrosion behavior of samples giving in some cases good quantitative estimation. The transposition of current and potential noise acquisition in the frequency domain (by Fast Fourier Transform and/or Maximum Entropy Method), gave further information on corrosion mechanism and in particular permitted to identify the type of corrosion. Finally the use of Discriminant Analysis permitted to deduce the best sampling frequency and sampling duration for EN acquisition, able to discriminate between two different situations.


Sign in / Sign up

Export Citation Format

Share Document