An angle-of-attack correction method for a 2-D miniature differential pressure solid-state anemometer

Measurement ◽  
2021 ◽  
Vol 171 ◽  
pp. 108833
Author(s):  
Pan Yichen ◽  
Liu Zhenyu ◽  
Fang Zhen ◽  
Du Lidong ◽  
Zhao Zhan
2013 ◽  
Vol 457-458 ◽  
pp. 1334-1337
Author(s):  
Xu Guang Sun ◽  
Chang Hai Wang ◽  
Shi Yan Shan ◽  
Cheng Long Feng

In brief introduction of the pneumatic shape measuring roller's construction and work principle, the static and dynamic state experiments of the roller then found distributing regulation and characteristics of the measuring differential pressure which following circumference direction. Then we put forward dynamic phase correction method to improve the testing accuracy of the roller. It passes by experimentation to prove the possibility of method in this text.


2000 ◽  
Vol 122 (4) ◽  
pp. 196-202 ◽  
Author(s):  
J. Whale ◽  
C. J. Fisichella ◽  
M. S. Selig

In order to provide accurate blade element data for wind turbine design codes, measured three-dimensional (3D) field data must be corrected in terms of the (sectional) angle of attack. A 3D Lifting-Surface Inflow Correction Method (LSIM) has been developed with the aid of a vortex-panel code in order to calculate the relationship between measured local flow angle and angle of attack. The results show the advantages of using the 3D LSIM correction over 2D correction methods, particularly at the inboard sections of the blade where the local flow is affected by post-stall effects and the influence of the blade root. [S0199-6231(00)00604-3]


Author(s):  
Guozhu Gao ◽  
Junqiang Bai ◽  
Guojun Li ◽  
Nan Liu ◽  
Yufei Li

Angle of attack has impact on transonic flow filed and aerodynamic force, but most of current researches on flutter use zero angle hypothesis, which has no consideration about angle of attack. Therefore, we use unsteady Reynold Averaged Navier-Stokes (RANS) equation and structural dynamic equation to establish the time domain aeroelastic analysis method. The solution in time domain is the fourth-order implicit Adams linear multi-step method which is based on prediction-correction method. The numerical simulations were used to analyze the transonic flutter boundary of Isogai Case A Model which was based on zero angle condition and nonzero angle respectively. The simulation results show that the reduced flutter speed decreases as the preset angle of attack decreases between 0.73 and 0.76, which shows a 12.5% decrease of the flutter speed at the farthest. Nonzero angle makes the transonic dip weaker and wider than fully turbulent flow. Changing in angle of attack of 6°, the flutter speed in the deepest position of transonic dip has increased by 124% compared to the flutter speed of 0°. Therefore, when flutter characters of airfoil is analyzed, the effects of the initial angle of attack must be taken into account in order to analyze flutter boundary correctly. In other words, increasing the angle of attack offers a way to control the system in terms of delaying flutter.


Author(s):  
T. J. Magee ◽  
J. Peng ◽  
J. Bean

Cadmium telluride has become increasingly important in a number of technological applications, particularly in the area of laser-optical components and solid state devices, Microstructural characterizations of the material have in the past been somewhat limited because of the lack of suitable sample preparation and thinning techniques. Utilizing a modified jet thinning apparatus and a potassium dichromate-sulfuric acid thinning solution, a procedure has now been developed for obtaining thin contamination-free samples for TEM examination.


Author(s):  
Kenneth M. Richter ◽  
John A. Schilling

The structural unit of solid state collagen complexes has been reported by Porter and Vanamee via EM and by Cowan, North and Randall via x-ray diffraction to be an ellipsoidal unit of 210-270 A. length by 50-100 A. diameter. It subsequently was independently demonstrated by us in dog tendon, dermis, and induced complexes. Its detailed morphologic, dimensional and molecular weight (MW) aspects have now been determined. It is pear-shaped in long profile with m diameters of 57 and 108 A. and m length of 263 A. (Fig. 1, tendon, KMnO4 fixation, Na-tungstate; Fig. 2a, schematic of unit in long, C, and x-sectional profiles of its thin, xB, and bulbous, xA portions; Fig. 2b, tendon essentially unmodified by ether and 0.4 N NaOH treatment, Na-tungstate). The unit consists of a uniquely coild cable, c, of ṁ 22.9 A. diameter and length of 2580-3316 A. The cable consists of three 2nd-strands, s, each of m 10.6 A.


Sign in / Sign up

Export Citation Format

Share Document