Design and experimental research of a temperature sensor applied to surface air temperature monitoring

Measurement ◽  
2021 ◽  
pp. 109719
Author(s):  
Jie Yang ◽  
Xiangjian Ge ◽  
Qingquan Liu ◽  
Zhonglin Sun
2020 ◽  
Vol 37 (8) ◽  
pp. 1497-1506
Author(s):  
Jie Yang ◽  
Qingquan Liu ◽  
Feng Ding ◽  
Renhui Ding

AbstractThe observation accuracy of the surface air temperature less than 0.1 K is a requirement, stated by the meteorological and climatological community. However, the accuracy of a temperature sensor inside a shield is affected by a number of factors including solar radiation, wind speed, upwelling longwave radiation, air density, sun elevation angle, sun azimuth angle, underlying surface, precipitation, moisture, structure, and coating of the radiation shield. Due to these factors, the temperature error of the temperature sensor may be much larger than 1 K under adverse conditions. To improve the observation accuracy, this paper proposed a spherical temperature sensor array. A series of analytical calculations based on a computational fluid dynamics (CFD) method is performed to verify the design principle of this sensor array. The calculation results show that the temperature error ratio can be assumed as a constant. To verify the accuracy of this sensor array, simulations and observation experiments are conducted. The simulation results show that the mean difference between the temperature provided by this sensor array and the reference air temperature is 0.072 K. The field experiment results show that a root-mean-square error (RMSE) and a mean absolute error (MAE) between the temperature provided by this sensor array and the reference air temperature are 0.173 and 0.153 K, respectively.


2005 ◽  
Vol 22 (7) ◽  
pp. 1095-1100 ◽  
Author(s):  
K. G. Hubbard ◽  
X. Lin ◽  
C. B. Baker

Abstract In 2004 a new aspirated surface air temperature system was officially deployed nationally in the U.S. Climate Reference Network (USCRN) commissioned by the National Oceanic and Atmospheric Administration. The primary goal of the USCRN is to provide future long-term and high-quality homogeneous observations of surface air temperature and precipitation that can be coupled to past long-term observations for the detection and attribution of present and future climate change. In this paper two precision air temperature systems are included for evaluating the new USCRN air temperature system based on a 1-yr side-by-side field comparison. The measurement errors of the USCRN temperature sensor are systematically analyzed, and the components of error attributable to the datalogger, lead wires, fixed resistors, and the temperature coefficient of the resistors are presented. Although the current configuration is adequate, a more desirable configuration of USCRN temperature sensor coupled with the datalogger is proposed as a means of further reducing the uncertainty for the USCRN temperature measurement.


Sign in / Sign up

Export Citation Format

Share Document