Effects of modified atmosphere packaging (MAP) on the microbiological quality and shelf life of ostrich meat

Meat Science ◽  
2011 ◽  
Vol 88 (4) ◽  
pp. 774-785 ◽  
Author(s):  
Enver Baris Bingol ◽  
Ozer Ergun
1993 ◽  
Vol 6 (3) ◽  
pp. 147-157 ◽  
Author(s):  
Antonietta Galli ◽  
Laura Franzetti ◽  
Stefania Carelli ◽  
Luciano Piergiovanni ◽  
Patrizia Fava

2013 ◽  
Vol 37 (4) ◽  
pp. 729-736 ◽  
Author(s):  
Mohammad Mizanur Rahman ◽  
Md Miaruddin ◽  
Md. Golam Ferdous Chowdhury ◽  
Md. Hafizul Haque Khan ◽  
MA Matin

The experiment was conducted to evaluate the effect of packaging materials on the quality and shelf life of green chili (Capsicum annuum) using passive modification of modified atmosphere packaging system. The modified atmosphere was created by making perforation in the polypropylene packets. Green chili pre-treated with chlorine water and then packaging in 0.3% perforated polypropylene packet resulted substantial reduction of weight loss and rotting/shriveling. These treatment combinations also considerably retained vitamin C, ß-carotene, moisture content, etc. Under this condition the retention of quality and shelf life of green chili could be extended up to 10 days at ambient condition as compared to non-treated and without packaging. DOI: http://dx.doi.org/10.3329/bjar.v37i4.14397 Bangladesh J. Agril. Res. 37(4): 729-736, December 2012


HortScience ◽  
2012 ◽  
Vol 47 (12) ◽  
pp. 1758-1763 ◽  
Author(s):  
Yukari Murakami ◽  
Yoshihiko Ozaki ◽  
Hidemi Izumi

The microbiological quality and shelf life of enzyme-peeled fresh-cut persimmon slices were evaluated during storage in a high CO2 controlled atmosphere (CA) and active modified atmosphere packaging (MAP) at 10 °C. Microbial counts of the enzyme-peeled slices were lower in high CO2 atmospheres (10%, 15%, and 20%) than in air during CA storage for 6 days at 10 °C with the 20% CO2 atmosphere being most effective. High CO2 atmospheres did not affect the number of bacterial and fungal species detected in the persimmon slices. The surface color, expressed as C* values, of the peeled side of enzyme-peeled slices was lower in high CO2 than in air after 6 days of CA storage. In contrast, C* values at the cut side were higher for slices stored in 20% CO2 than in air on Day 6. High CO2 atmospheres did not affect other quality of enzyme-peeled slices such as texture, pH, sugar content, and total ascorbic acid content. Based on the optimum 20% CO2 concentration in a CA, enzyme-peeled slices were stored in a MAP flushed with either air or 20% CO2 for 4 days at 10 °C. The CO2 concentration approached an equilibrium of either 5% or 10% after 3 days of storage in packages flushed with either air or 20% CO2, respectively, and the O2 decreased to ≈10% in both packages. Adding 20% CO2 to the MAP was effective in reducing the growth of mesophiles and coliforms but not fungi in enzyme-peeled persimmon slices throughout 4 days of storage. The diversity of bacterial and fungal flora was partially similar between packages flushed with air and 20% CO2. Texture, pH, surface color, sugar content, and total ascorbic acid content of enzyme-peeled persimmon slices were unaffected by air or 20% CO2 as the flushing gas, except that C* values of the enzymatically peeled side on Day 4 were lower for slices flushed with 20% CO2 than air. A 20% CO2 atmosphere is recommended for reducing the microbial population of enzyme-peeled persimmon slices stored at 10 °C and the shelf life of persimmon slices in an active MAP with 20% CO2 is 4 days at 10 °C.


Sign in / Sign up

Export Citation Format

Share Document