scholarly journals Adaptive MIMO pole placement control for commissioning of a rotor system with active magnetic bearings

Mechatronics ◽  
2020 ◽  
Vol 65 ◽  
pp. 102313 ◽  
Author(s):  
Niko Nevaranta ◽  
Pekko Jaatinen ◽  
Jouni Vuojolainen ◽  
Teemu Sillanpää ◽  
Olli Pyrhönen
Author(s):  
Sampath Kumar Kuppa ◽  
Mohit Lal

Abstract Present research inspects the performance of rotor–bearing–coupling system in the presence of active magnetic bearings (AMBs). A methodology is suggested to quantify various fault characteristics along with AMB characteristic parameters of a coupled turbine generator system. A simplest possible turbogenerator system is modeled to analyze coupling misalignment. Conventional methodology to estimate dynamic system parameters based on forced response information is not enough for AMB-integrated rotor system because it requires current information along with displacement information. The controlling current of AMB is tuned and controlled with a controller of proportional–integral–derivative (PID) type. A numerical technique (Lagrange's equation) is applied to get equations of motion (EOM). Runge–Kutta technique is used to obtain EOM to acquire the time domain responses. The fast Fourier transformation (FFT) is applied on obtained responses to acquire responses in the frequency domain, and full spectrum technique is applied to propose the methodology. A methodology that depends on the least squares regression approach is proposed to evaluate the multifault parameters of AMB-integrated rotor system. The robustness of the algorithm is checked against various levels of noise and modeling error and observed efficient. An appreciable reduction in misalignment forces and moments is observed by using AMBs.


Author(s):  
Prabhat Kumar ◽  
Rajiv Tiwari

Abstract This paper focusses on analysing the vibration behaviour of a rigid rotor levitated by active magnetic bearings (AMB) under the influence of unbalance and misalignment parameters. Unbalance in rotor and misalignment between rotor and both supported AMBs are key fault parameters in the rotor system. To demonstrate this dynamic analysis, an unbalanced rigid rotor with a disc at the middle levitated by two misaligned active magnetic bearings has been mathematically modelled. One of the novel concepts is also described as how the force due to active magnetic bearings on the rigid rotor is modified when the rotor is parallel misaligned with AMBs. With inclusion of inertia force, unbalance force and force due to misaligned AMBs, the equations of motion of the rigid rotor system are derived and converted into dimensionless form in terms of various non-dimensional system and fault parameters. Numerical simulations have been performed to yield the dimensionless rotor displacement and controlling current responses at AMBs. The prime intention of the present paper is to study the effect on the displacement response of the rigid rotor system and the current consumption of AMBs for different ranges of disc eccentricities and rotor-AMB misalignments.


1996 ◽  
Vol 118 (4) ◽  
pp. 825-829 ◽  
Author(s):  
O. Lang ◽  
J. Wassermann ◽  
H. Springer

In this paper a digital numerical simulation is carried out in which active magnetic bearings (AMB) are applied to control nonlinear and nonsynchronous vibrations of a rigid rotor excited by nonconservative cross-coupling mechanisms. Through an adaptive control algorithm of the AMB controller, unknown cross-coupling parameters of a rotor are estimated on-line by a standard least-square estimator along with a time-varying so-called forgetting factor. The parameters of the AMB controller are adapted in order to compensate for the cross-coupling effects and to stabilize the rotor system. Transient cross-coupling response characteristics are calculated by numerical simulation of a rigid rotor supported by two active magnetic bearings. With this kind of control strategy, the stability of the system can be guaranteed for much higher values of cross-coupling coefficients than with common nonadaptive feedback controllers, designed with pole placement or least square algorithms.


Author(s):  
Bala Murugan S. ◽  
R. K. Behera

Abstract The dynamic analyses of rotating systems are always a testing task to obtain the definite results. This paper carries the dynamic modelling, analysis and identification of coupled flexible rotor system supported by an auxiliary Active Magnetic Bearings (AMBs). An identification algorithm is used to estimate the dynamic parameters of AMB, and rotor residual mass imbalance. The proposed algorithm is a right method for the analysis of fully levitated rotor on AMBs. Finite element method is used to model the dynamic flexible rotor system with PID controller. A conventional dynamic condensation technique is implemented in the development of identification algorithm to overcome the difficulty in numerical simulation. The least-squares fit technique is deployed to estimate the dynamic parameters in frequency domain. Then the algorithm is extended to find the misalignment forces and moments at the coupling point. Numerical study is carried to check the correctness of the algorithm. The proposed algorithm is yet to be tested to experimental results from a fully levitated rotor test rig supported with AMBs.


Sign in / Sign up

Export Citation Format

Share Document