Design, prototyping and experimental testing of a chiral blade system for hydroelectric microgeneration

2009 ◽  
Vol 44 (8) ◽  
pp. 1463-1484 ◽  
Author(s):  
F. Giudice ◽  
G. La Rosa
PCI Journal ◽  
2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Cameron D. Murray ◽  
Brittany N. Cranor ◽  
Royce W. Floyd ◽  
Jin-Song Pei

2019 ◽  
Author(s):  
Joppe Rutten ◽  
Jens Verschoren ◽  
Nesrin Ozalp ◽  
Cédric Ophoff ◽  
David Moens

2018 ◽  
Vol 6 (32) ◽  
pp. 17-25
Author(s):  
S.V. Slastunov ◽  
◽  
A.A. Meshkov ◽  
E.V. Mazanik ◽  
I.A. Komissarov ◽  
...  

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 165-172
Author(s):  
Vincenzo Bianco ◽  
Giorgio Monti ◽  
Nicola Pio Belfiore

The use of friction pendulum devices has recently attracted the attention of both academic and professional engineers for the protection of structures in seismic areas. Although the effectiveness of these has been shown by the experimental testing carried out worldwide, many aspects still need to be investigated for further improvement and optimisation. A thermo-mechanical model of a double friction pendulum device (based on the most recent modelling techniques adopted in multibody dynamics) is presented in this paper. The proposed model is based on the observation that sliding may not take place as ideally as is indicated in the literature. On the contrary, the fulfilment of geometrical compatibility between the constitutive bodies (during an earthquake) suggests a very peculiar dynamic behaviour composed of a continuous alternation of sticking and slipping phases. The thermo-mechanical model of a double friction pendulum device (based on the most recent modelling techniques adopted in multibody dynamics) is presented. The process of fine-tuning of the selected modelling strategy (available to date) is also described.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Konrad Dadej ◽  
Jarosław Bieniaś ◽  
Paolo Sebastiano Valvo

An experimental campaign on glass-fiber/aluminum laminated specimens was conducted to assess the interlaminar fracture toughness of the metal/composite interface. Asymmetric end-notched flexure tests were conducted on specimens with different fiber orientation angles. The tests were also modeled by using two different analytical solutions: a rigid interface model and an elastic interface model. Experimental results and theoretical predictions for the specimen compliance and energy release rate are compared and discussed.


2021 ◽  
Vol 1741 ◽  
pp. 012008
Author(s):  
A A Kulikov ◽  
A V Ratushnyi ◽  
I A Kovaliov ◽  
A S Mandryka ◽  
A S Ignatiev

Sign in / Sign up

Export Citation Format

Share Document