Analytical calculation of the tooth surface contact stress of spur gear pairs with misalignment errors in multiple degrees of freedom

2020 ◽  
Vol 149 ◽  
pp. 103823 ◽  
Author(s):  
Qi Wen ◽  
Qungui Du ◽  
Xiaochen Zhai
2021 ◽  
Vol 2133 (1) ◽  
pp. 012037
Author(s):  
Yusheng Zhai ◽  
Jie Mu ◽  
Ruiguang Yun ◽  
Siran Jia ◽  
Jianfeng En ◽  
...  

Abstract Through the establishment of a pair of spur gear contact models, based on Hertz contact theory, the tooth surface contact stress is calculated; then the Ansys finite element analysis software is used to simulate and analyse the stress distribution. Through the analysis and comparison of the two results, it is proved that the contact stress calculated by Hertz theory is relatively small, which is close to the results of the finite element simulation analysis. Theoretical calculation can verify the accuracy of the finite element simulation analysis model, and the finite element simulation analysis provides an effective way to accurately calculate the contact stress of the tooth surface.


2012 ◽  
Vol 2012.47 (0) ◽  
pp. 170-171
Author(s):  
Tomoyuki TAMAMIZU ◽  
Tatsuya OHMACHI ◽  
Hidenori KOMATSUBARA

Wahana Fisika ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 21
Author(s):  
Anisul Islam ◽  
Md. Mashrur Islam

Spur gears are the most well-known kind of gears used in hybrid vehicle’s power transmission. They have straight teeth, and are mounted on parallel shafts. In some cases, many spur gears are utilized without a moment's delay to make huge rigging decreases. In this paper how stress creates on a spur equip under various conditions and conditions and reenactments of a rigging system (two spur gears) is assessed by Ansys workbench. For this static structural and dynamic analysis modeling is utilized. A couple of spurs equip tooth in real life is by and large subjected to two sorts of cyclic stress: contact stress and twisting stress including bowing fatigue. The two stresses may not accomplish their greatest esteems at a similar purpose of contact fatigue. These sorts of failure can be limited by analysis of the issue amid the outline organize and making appropriate tooth surface profile with legitimate assembling strategies.


Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Lixin Guo ◽  
Diange Yang

Abstract In order to detect the gear tooth surface wear fault, this paper presents a new fault diagnosis method based on Symlets wavelet family multi-structure element difference morphological denoising and frequency slice wavelet transform (FSWT). Besides considering the gear backlash, time-varying mesh stiffness, gear error and bearing longitudinal response, and low frequency excitation caused by the torque fluctuation, random disturbance of damping gear ratio, gear backlash, excitation frequency, and meshing stiffness are also considered. Dynamics equations of a three degrees of freedom spur gear transmission system with tooth surface wear fault are established according to Newton’s laws. The 4–5 order variable step Runge–Kutta method has been used for solving the equations to get the vibration signal of the system. Then, the proposed method is applied to extract the wear fault signal, which verifies the feasibility and effectiveness of the proposed method.


2016 ◽  
Vol 10 (5) ◽  
pp. 145 ◽  
Author(s):  
Ahmed Mohammed Abdelrhman ◽  
Haidar F. AL-Qrimli ◽  
Husam M. Hadi. ◽  
Roaad K. Mohammed ◽  
Hakim S. Sultan

<p>A gear is a critical component and can be found in many industrial applications. This investigation develops a three dimensional finite element spur gear model to calculate the contact stress on the gear tooth surfaces. Contact stress is one of the main factors that is used to decide the gears tooth surface strength. In addition there are other important factors such as frictional forces and micro-pits that influence the gear tooth surface. Different analytical techniques have been used to calculate the contact stress of the gear surfaces namely; Hertzian theory and AGMA standards. The analytical results have been compared to the numerical analysis to verify the spur gear finite element model.</p>


Author(s):  
Liming Wang ◽  
Zaigang Chen ◽  
Yimin Shao ◽  
Xi Wang

It was found that the vibration features resulted from tooth crack and sliding on the contact interfaces due to speed variation are very similar with each other, which is difficult to distinguish. So, it is meaningful to study whether they are the same or not. Firstly, a finite element model of a spur gear pair in mesh with tooth crack at pitch circle is established to calculate the effect of tooth crack on gear mesh stiffness. Then, combined with the tooth crack through mesh stiffness, a spur gear dynamic model with six degrees of freedom (dof) is developed to extract the dynamic features affected by the tooth crack. The tooth surface friction due to different relative velocity is also involved to study its effects on the dynamic characteristics of the gear system. Finally, comparisons are made between the dynamic features of the gear system with tooth crack and the tooth surface sliding to expose their effects to supply some theoretical guidance on fault detection.


2012 ◽  
Vol 152-154 ◽  
pp. 753-758
Author(s):  
Song Deng ◽  
Lin Hua ◽  
Xing Hui Han ◽  
Song Huang

The aim in this paper is to analyze tooth surface contact stress and transmission errors, verify existence of tooth end effect and discuss symmetry of symmetrical bevel gear differential (SBGD), etc. With this aim, a 3D elastic FE model of SBGD is established under the ANSYS software environment and its meshing characteristic is determined. Starting from here, by analyzing stress and circumferential displacement of tooth, the phenomena of stress concentration is acquired; the distribution of tooth surface contact stress is studied; tooth end effect is confirmed; transmission error is assessed. The analysis is ended by assessing the symmetry of SBGD. Research results provide valuable guidelines for the design of SBGD. The developing model method proposed in this paper makes it possible to study other complex gear mechanisms such as planetary gear system.


Sign in / Sign up

Export Citation Format

Share Document