Geometric error identification and compensation for rotary worktable of gear profile grinding machines based on single-axis motion measurement and actual inverse kinematic model

2021 ◽  
Vol 155 ◽  
pp. 104042
Author(s):  
Changjiu Xia ◽  
Shilong Wang ◽  
Sibao Wang ◽  
Chi Ma ◽  
Kai Xu
Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


Author(s):  
S. Kaizerman ◽  
B. Benhabib ◽  
R. G. Fenton ◽  
G. Zak

Abstract A new robot kinematic calibration procedure is presented. The parameters of the kinematic model are estimated through a relationship established between the deviations in the joint variables and the deviations in the model parameters. Thus, the new method can be classified as an inverse calibration procedure. Using suitable sensitivity analysis methods, the matrix of the partial derivatives of joint variables with respect to robot parameters is calculated without having explicit expressions of joint variables as a function of task space coordinates (closed inverse kinematic solution). This matrix provides the relationship between the changes in the joint variables and the changes in the parameter values required for the calibration. Two deterministic sensitivity analysis methods are applied, namely the Direct Sensitivity Approach and the Adjoint Sensitivity Method. The new calibration procedure was successfully tested by the simulated calibrations of a two degree of freedom revolute-joint planar manipulator.


2021 ◽  
Author(s):  
Darci Luiz Tomasi Junior ◽  
Eduardo Todt

This article presents a study of the resources necessary to providemovement and localization in three wheeled omnidirectionalrobots, through the detailed presentation of the mathematical proceduresapplicable in the construction of the inverse kinematic model,the presentation of the main hardware and software componentsused for the construction of a functional prototype, and the testprocedure used to validate the assembly.The results demonstrate that the developed prototype is functional,as well as the developed kinematic equation, given the smallerror presented at the end of the validation procedure.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Huangsheng Xie ◽  
Guodong Li ◽  
Yuexin Wang ◽  
Zhihe Fu ◽  
Fengyu Zhou

This paper focuses on the problem of visual servo grasping of household objects for nonholonomic mobile manipulator. Firstly, a new kind of artificial object mark based on QR (Quick Response) Code is designed, which can be affixed to the surface of household objects. Secondly, after summarizing the vision-based autonomous mobile manipulation system as a generalized manipulator, the generalized manipulator’s kinematic model is established, the analytical inverse kinematic solutions of the generalized manipulator are acquired, and a novel active vision based camera calibration method is proposed to determine the hand-eye relationship. Finally, a visual servo switching control law is designed to control the service robot to finish object grasping operation. Experimental results show that QR Code-based artificial object mark can overcome the difficulties brought by household objects’ variety and operation complexity, and the proposed visual servo scheme makes it possible for service robot to grasp and deliver objects efficiently.


Author(s):  
Chunyang Han ◽  
Yang Yu ◽  
Zhenbang Xu ◽  
Xiaoming Wang ◽  
Peng Yu ◽  
...  

This paper presents a kinematic calibration of a 6-RRRPRR parallel kinematic mechanism with offset RR-joints that would be applied in space positioning field. In order to ensure highly accurate and highly effective calibration process, the complete error model, which contains offset universal joint errors, is established by differentiating inverse kinematic model. A calibration simulation comparison with non-complete error model shows that offset universal joint errors are crucial to improve the calibration accuracy. Using the error model, an optimal calibration configuration selection algorithm is developed to determine the least number of measurement configurations as well as the optimal selection of these configurations from the feasible configuration set. To verify the effectiveness of kinematic calibration, a simulation and experiment were performed. The results show that the developed approach can effectively improve accuracy of a parallel kinematic mechanism with relatively low number of calibration configurations.


Sign in / Sign up

Export Citation Format

Share Document