Dynamic tensile behaviour of high performance fibre reinforced cementitious composites after high temperature exposure

2013 ◽  
Vol 59 ◽  
pp. 87-109 ◽  
Author(s):  
Alessio Caverzan ◽  
Ezio Cadoni ◽  
Marco di Prisco

2020 ◽  
Vol 53 (6) ◽  
Author(s):  
Francesco Lo Monte ◽  
Liberato Ferrara

AbstractWithin the framework of the European Programme Horizon 2020, the Research Project ReSHEALience is currently running with the objective of developing a new approach for the design of structures exposed to extremely aggressive environments, based on Durability Assessment based Design and Life Cycle Analysis. To this aim, new advanced Ultra-High Performance Fibre Reinforced Cementitious Composites with improved durability, called Ultra-High Durability Concretes, are under investigation to characterize their tensile response in both ordinary and very aggressive conditions. In this context, the first step is to develop an effective approach for identifying the main parameters describing the overall behaviour in tension. In the present study, indirect tension tests have been performed via two techniques, based on Double Edge Wedge Splitting and 4-Point Bending Tests. Starting from the test results, a combined experimental-numerical identification procedure has been implemented in order to evaluate the effective material behaviour in direct tension in terms of stress–strain law. In the paper, the mechanical characterization for the reference mix is reported so to describe the identification procedure adopted.


2018 ◽  
Vol 6 (2) ◽  
pp. 113-119
Author(s):  
Isam M. Ali ◽  
Ali H. Adheem

"Historically, the flexural behavior of hybrid fiber cement composites is not completely understood using the traditional test methods. This research presents the results of an experimental investigations on a high performance cement composites (HPCC) containing both micro steel fibers (SF) and micro polypropylene fibers (PP) before and after elevated temperature exposure. The experimental program was developed to study the flexural performance (flexural strength, toughness and stiffness) under high temperature using mono and hybrid (SF) and (SF + PP) fibers. Mixtures were divided into eight different groups, with constant w/c of 0.28 and different fibers content. Based on the results of this research, the replacing of micro (SF) in high performance cement composites by 15 % of micro (PP) fibers is recommended at high temperature exposure due to the fact that all hybrid fiber HPCC specimens show slight decreasing in flexural behavior compared to samples reinforced with 1% volume fraction of mono steel fibers after high temperature exposure."


2017 ◽  
Vol 909 ◽  
pp. 275-279
Author(s):  
Jan Fořt ◽  
David Čítek ◽  
Milena Pavlíková ◽  
Zbyšek Pavlík

High Performance Fiber Reinforced Concrete (HPFRC) became very popular material for its high mechanical strength, elastic modulus and corrosion resistance. However, also its high-temperature resistance is of a particular importance because of the fire safety. Therefore, the effect of high-temperature exposure on UHPC reinforced by combination of steel and PVA fibers was studied in the paper. PVA fibers were used to moderate concrete damage induced by water vapor evaporation from dense UHPC matrix. The UHPFRC samples were exposed to the temperatures of 200 °C, 400 °C, 600 °C, 800 °C, and 1 000 °C respectively. Concrete structural changes induced by high temperature action were described by the measurement of basic physical and mechanical properties. The realized experiments provide information on the changes of concrete porosity and loss of mechanical resistivity.


Sign in / Sign up

Export Citation Format

Share Document