Locally exact asymptotic homogenization of viscoelastic composites under anti-plane shear loading

2021 ◽  
Vol 155 ◽  
pp. 103752
Author(s):  
Zhelong He ◽  
Marek-Jerzy Pindera
2020 ◽  
Vol 87 (12) ◽  
Author(s):  
Zhelong He ◽  
Marek-Jerzy Pindera

Abstract The previously developed finite volume-based asymptotic homogenization theory (FVBAHT) for anti-plane shear loading (He, Z., and Pindera, M.-J., “Finite-Volume Based Asymptotic Homogenization Theory for Periodic Materials Under Anti-Plane Shear,” Eur. J. Mech. A Solids (in revision)) is further extended to in-plane loading of unidirectional fiber reinforced periodic structures. Like the anti-plane FVBAHT, the present extension builds upon the previously developed finite volume direct averaging micromechanics theory applicable under uniform strain fields and further accounts for strain gradients and non-vanishing microstructural scale relative to structural dimensions, albeit with multidimensional in-plane loadings incorporated. The unit cell problems at different orders of the asymptotic field expansion are solved by satisfying local equilibrium equations and displacement and traction continuity in a surface-averaged sense which is unique among the existing asymptotic homogenization schemes, leading to microfluctuation functions that yield homogenized stiffness tensors at each order for use in macroscale problems. The newly extended multiscale theory is employed in the analysis of a structural boundary-value problem under in-plane loading, illustrating pronounced boundary effects. A combination approach proposed in the literature is subsequently employed to mitigate the boundary layer effects by explicitly accounting for the microstructural details in the boundary region. This combination approach produces accurate recovery of the local fields in both regions. The extension to in-plane problem marks FVBAHT as an alternative, self-contained asymptotic homogenization tool, with documented advantages relative to current numerical techniques, for the analysis of periodic materials in the presence of strain gradients produced by three-dimensional loading regardless of microstructural scale.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Fei Wang ◽  
Ping Cao ◽  
Yu Chen ◽  
Qing-peng Gao ◽  
Zhu Wang

In order to investigate the influence of the joint on the failure mode, peak shear strength, and shear stress-strain curve of rock mass, the compression shear test loading on the parallel jointed specimens was carried out, and the acoustic emission system was used to monitor the loading process. The joint spacing and joint overlap were varied to alter the relative positions of parallel joints in geometry. Under compression-shear loading, the failure mode of the joint specimen can be classified into four types: coplanar shear failure, shear failure along the joint plane, shear failure along the shear stress plane, and similar integrity shear failure. The joint dip angle has a decisive effect on the failure mode of the specimen. The joint overlap affects the crack development of the specimen but does not change the failure mode of the specimen. The joint spacing can change the failure mode of the specimen. The shear strength of the specimen firstly increases and then decreases with the increase of the dip angle and reaches the maximum at 45°. The shear strength decreases with the increase of the joint overlap and increases with the increase of the joint spacing. The shear stress-displacement curves of different joint inclination samples have differences which mainly reflect in the postrupture stage. From monitoring results of the AE system, the variation regular of the AE count corresponds to the failure mode, and the peak value of the AE count decreases with the increase of joint overlap and increases with the increase of joint spacing.


1998 ◽  
Vol 64 (618) ◽  
pp. 438-444 ◽  
Author(s):  
Kenichi HIRASHIMA ◽  
Shigerou NAKANE ◽  
Mutsumi MIYAGAWA ◽  
Shinji KIKUCHI

2018 ◽  
Vol 183 ◽  
pp. 02037 ◽  
Author(s):  
Taamjeed Rahmaan ◽  
Ping Zhou ◽  
Cliff Butcher ◽  
Michael J. Worswick

Shear tests were performed at strain rates ranging from quasi-static (0.01 s-1) to 500 s-1 for AA7075-T6 sheet metal alloy at room temperature. A miniature sized shear specimen was used in this work to perform high strain rate shear testing. Digital image correlation (DIC) techniques were employed to measure the strains in the experiments. At maximum in-plane shear strains greater than 20%, the AA7075-T6 alloy demonstrated a reduced work hardening rate at elevated strain rates. At lower strains, the AA7075-T6 alloy showed mild positive rate sensitivity. The strain to localization (using the Zener-Holloman criterion), measured using the DIC technique, decreased with strain rate in shear loading. The strain at complete failure, however, exhibited an increase at the highest strain rate (500 s-1). The current work also focused on characterization of the thermal conditions occurring during high rate loading in shear with in situ high speed thermal imaging. Experimental results from the highest strain rate (500 s-1) tests showed a notable increase in temperature within the specimen gauge region as a result of the conversion of plastic deformation energy into heat.


2018 ◽  
Vol 877 ◽  
pp. 446-452
Author(s):  
R.S. Aleena ◽  
R.S. Priyadarsini

The composite materials are widely used nowadays as major parts of structures in many industries like aerospace, marine, automobile, space vehicles and also for the repair and replacement of civil infrastructures. Stresses are vital parameters considered in the design of structures. Any irregularities in shape, materials, or the presence of cut-outs create localized stress concentration and reduce the capacity of the material to take loads. The anisotropic behaviour of composite structures also makes the analysis more complex. Shear loading often exists in the engineering practices such as in aerospace due to heavy aerodynamic loads. So in the present study the effects of different parameters like layup sequences, number of plies, proximity of cut-outs, shapes and arrangements of cut-outs under in-plane shear loading on the glass fibre reinforced polymer (GFRP) plate with multiple cut-outs are studied using ABAQUS. The results from the study show that all the parameters considered for the study affects the stress concentration considerably. The observations are analysed then and the final conclusions are presented.


Sign in / Sign up

Export Citation Format

Share Document