An analytical methodology for the dynamic amplification factor in progressive collapse evaluation of building structures

2010 ◽  
Vol 37 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Meng-Hao Tsai
2018 ◽  
Vol 136 ◽  
pp. 1247-1251
Author(s):  
Raúl Muñoz ◽  
Francisco J. Calvo ◽  
Sergio Sádaba ◽  
Ana M. Gil ◽  
Javier Rodríguez ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Fei Han ◽  
Dan-hui Dan ◽  
Hu Wang

In order to study the coupled influence of deck pavement roughness and velocity on dynamic amplification factor, a 2-DOF 1/4 vehicle model is employed to establish the vehicle-bridge-coupled vibration system. The random dynamic load of running vehicle simulated by software MATLAB is applied on bridge deck pavement (BDP) through ANSYS software. Besides, the influence of BDP parameters on control stress under static load and random vibration load is analyzed. The results show that if the surface of BDP is smooth, the dynamic magnification coefficient would first increase and then decrease with increasing of vehicle velocity and reach its maximum value when v = 20 m/s; if the surface of BDP is rough, the maximal and minimum values of the dynamic amplification coefficient (DAC) occur, respectively, when the velocity reaches 10 m/s and 15 m/s. For a composite bridge deck with the cushion layer, the thickness of asphalt pavement should be not too thick or thin and better to be controlled for about 10 cm; with the increasing of cushion layer thickness, the control stress of deck pavement is all decreased and show similar change regularity under effect of different loads. In view of self-weight of structure, the thickness of the cushion layer is recommended to be controlled for about 4 cm.


2018 ◽  
Vol 21 (14) ◽  
pp. 2169-2183 ◽  
Author(s):  
Justin M Russell ◽  
John S Owen ◽  
Iman Hajirasouliha

Previous studies have demonstrated that reinforced concrete flat slab structures could be vulnerable to progressive collapse. Although such events are dynamic, simplified static analyses using the sudden column loss scenario are often used to gain an indication into the robustness of the structure. In this study, finite element analysis is used to replicate column loss scenarios on a range of reinforced concrete flat slab floor models. The model was validated against the results of scaled-slab experiments and then used to investigate the influence of different geometric and material variables, within standard design ranges, on the response of the structure. The results demonstrate that slab elements are able to effectively redistribute loading after a column loss event and therefore prevent a progressive collapse. However, the shear forces to the remaining columns were 159% of their fully supported condition and increased to 300% when a dynamic amplification factor of 2.0 was applied. It is shown that this can potentially lead to a punching shear failure in some of the slab elements.


Sign in / Sign up

Export Citation Format

Share Document