In vitro pulsatile flow study in compliant and rigid ascending aorta phantoms by stereo particle image velocimetry

Author(s):  
Sina G. Yazdi ◽  
Paul D. Docherty ◽  
Petra N. Williamson ◽  
Mark Jermy ◽  
Natalia Kabaluik ◽  
...  
Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


Author(s):  
Ryan A. Peck ◽  
Edver Bahena ◽  
Reza Jahan ◽  
Guillermo Aguilar ◽  
Hideaki Tsutsui ◽  
...  

2018 ◽  
Vol 165 ◽  
pp. 91-106 ◽  
Author(s):  
Chun-yu Guo ◽  
Tie-cheng Wu ◽  
Wan-zhen Luo ◽  
Xin Chang ◽  
Jie Gong ◽  
...  

Author(s):  
Katharina Stichling ◽  
Maximilian Elfner ◽  
Hans-Jörg Bauer

Abstract In the present study an existing test rig at the Institute of Thermal Turbomachinery (ITS), Karlsruhe Institute of Technology (KIT) designed for generic film cooling studies is adopted to accommodate time resolved stereoscopic particle image velocimetry measurements. Through a similarity analysis the test rig geometry is scaled by a factor of about 20. Operating conditions of hot gas and cooling air inlet and exit can be imposed that are compliant with realistic engine conditions including density ratio. The cooling air is supplied by a parallel-to-hot gas coolant flow-configuration with a coolant Reynolds number of 30,000. Time-resolved and time-averaged stereo particle image velocimetry data for a film cooling flow at high density ratio and a range of blowing ratios is presented in this study. The investigated film cooling hole constitutes a 10°-10°-10° laidback fan-shaped hole with a wide spacing of P/D = 8 to insure the absence of jet interaction. The inclination angle amounts to 35°. The time-resolved data indicates transient behaviour of the film cooling jet.


Sign in / Sign up

Export Citation Format

Share Document