Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot

2011 ◽  
Vol 88 (8) ◽  
pp. 2251-2254 ◽  
Author(s):  
Weiting Liu ◽  
Xiaoying Cheng ◽  
Xin Fu ◽  
Cesare Stefanini ◽  
Paolo Dario
Author(s):  
Kiran Singh ◽  
Sébastien Michelin ◽  
Emmanuel De Langre

The problem of energy harvesting from flutter instabilities in flexible slender structures in axial flows is considered. In a recent study, we used a reduced-order theoretical model of such a system to demonstrate the feasibility for harvesting energy from these structures. Following this preliminary study, we now consider a continuous fluid-structure system. Energy harvesting is modelled as strain-based damping, and the slender structure under investigation lies in a moderate fluid loading range, for which the flexible structure may be destabilized by damping. The key goal of this work is to analyse the effect of damping distribution and intensity on the amount of energy harvested by the system. The numerical results indeed suggest that non-uniform damping distributions may significantly improve the power-harvesting capacity of the system. For low-damping levels, clustered dampers at the position of peak curvature are shown to be optimal. Conversely for higher damping, harvesters distributed over the whole structure are more effective.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
David N. Betts ◽  
H. Alicia Kim ◽  
Christopher R. Bowen

Energy harvesting devices based on a piezoelectric material attached to asymmetric bistable laminate plates have been shown to exhibit high levels of power extraction over a wide range of frequencies. This paper optimizes for the design of bistable composites combined with piezoelectrics for energy harvesting applications. The electrical energy generated during state-change, or “snap-through,” is maximized through variation in ply thicknesses and rectangular laminate edge lengths. The design is constrained by a bistability constraint and limits on both the magnitude of deflection and the force required for the reversible actuation. Optimum solutions are obtained for differing numbers of plies and the numerical investigation results are discussed.


2014 ◽  
Vol 554 ◽  
pp. 712-716 ◽  
Author(s):  
Susilo Sidik ◽  
Azma Putra ◽  
Swee Leong Kok ◽  
Mohd Zaki Nuawi ◽  
Aswan Abdul Jalil Nawal

Acoustic energy harvesting from ambient noise utilizing flexural vibration of a flexible panel is investigated. A flexural vibration of a flexible panel is use to extract more energy from the ambient noise level where piezoelectric materials of PVDF films are attached at the plate edges. The energy harvesting can be obtained with a maximum output power of 120 pW at the sound pressure level of 97.3 dBA.


Author(s):  
John H.L. Watson ◽  
John L. Swedo ◽  
R.W. Talley

A preliminary study of human mammary carcinoma on the ultrastructural level is reported for a metastatic, subcutaneous nodule, obtained as a surgical biopsy. The patient's tumor had responded favorably to a series of hormonal therapies, including androgens, estrogens, progestins, and corticoids for recurring nodules over eight years. The pertinent nodule was removed from the region of the gluteal maximus, two weeks following stilbestrol therapy. It was about 1.5 cms in diameter, and was located within the dermis. Pieces from it were fixed immediately in cold fixatives: phosphate buffered osmium tetroxide, glutaraldehyde, and paraformaldehyde. Embedment in each case was in Vestopal W. Contrasting was done with combinations of uranyl acetate and lead hydroxide.


Author(s):  
H.D. Geissinger ◽  
C.K. McDonald-Taylor

A new strain of mice, which had arisen by mutation from a dystrophic mouse colony was designated ‘mdx’, because the genetic defect, which manifests itself in brief periods of muscle destruction followed by episodes of muscle regeneration appears to be X-linked. Further studies of histopathological changes in muscle from ‘mdx’ mice at the light microscopic or electron microscopic levels have been published, but only one preliminary study has been on the tibialis anterior (TA) of ‘mdx’ mice less than four weeks old. Lesions in the ‘mdx’ mice vary between different muscles, and centronucleation of fibers in all muscles studied so far appears to be especially prominent in older mice. Lesions in young ‘mdx’ mice have not been studied extensively, and the results appear to be at variance with one another. The degenerative and regenerative aspects of the lesions in the TA of 23 to 26-day-old ‘mdx’ mice appear to vary quantitatively.


Author(s):  
J P Cassella ◽  
V Salih ◽  
T R Graham

Left ventricular assist systems are being developed for eventual long term or permanent implantation as an alternative to heart transplantation in patients unsuitable for or denied the transplant option. Evaluation of the effects of these devices upon normal physiology is required. A preliminary study was conducted to evaluate the morphology of aortic tissue from calves implanted with a pneumatic Left Ventricular Assist device-LVAD. Two 3 month old heifer calves (calf 1 and calf 2) were electively explanted after 128 days and 47 days respectively. Descending thoracic aortic tissue from both animals was removed immediately post mortem and placed into karnovsky’s fixative. The tissue was subsequently processed for transmission electron microscopy (TEM). Some aortic tissue was fixed in neutral buffered formalin and processed for routine light microscopy.


Sign in / Sign up

Export Citation Format

Share Document