Split vector systems for ultra-targeted gene delivery: A contrivance to achieve ethical assurance of somatic gene therapy in vivo

2014 ◽  
Vol 83 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Oleg E. Tolmachov
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 196-196
Author(s):  
Sandra Pilat ◽  
Sebastian Carotta ◽  
Bernhard Schiedlmeier ◽  
Kenji Kamino ◽  
Andreas Mairhofer ◽  
...  

Abstract In the context of somatic gene therapy of the hematopoietic system, transplantation of molecularly defined and, hence, “safe” clones would be highly desirable. However, techniques which allow gene targeting, subsequent in vitro selection and clonal expansion are only available for embryonic stem (ES) cells. After in vitro differentiation, some of their progeny cells are capable of mediating long term hematopoietic repopulation after transplantation into immunodeficient recipient mice, in vivo. This is especially efficient when the homeodomain transcription factor HOXB4 is ectopically expressed (1). We have recently shown that HOXB4-ES-cell derivatives behave similar to bone marrow cells also expressing this transcription factor ectopically, both in vitro and in vivo (2). Here we demonstrate that long term repopulation (>6 months) in Rag2(−/−)γ C(−/−) mice can be achieved with ES-cell derived hematopoietic cells (ES-HCs) obtained from single, molecularly characterized ES-clones, in which the insertion sites of the retroviral expression vector had been defined. Clones expressing HOXB4 above a certain level showed a high extent of chimerism in the bone marrow of transplanted mice (average 75%; range 45–95%, n=4) whereas ES-HC clones expressing lower levels only repopulated with very low efficiency (average 2.5% chimerism, range 1–4%, n=6 mice). These results suggest that the capability of long-term repopulation, in vivo, is highly dependent on the expression levels of HOXB4 in the transplanted clones. Only mice reconstituted with ES-HC clones expressing high amounts of HOXB4 and thus showing substantial chimerism, recapitulated the morphohistological phenotype observed in polyclonally reconstituted mice. This included the bias towards myelopoiesis, “benign” myeloid proliferation in spleen and the incompatibility of HOXB4 expression with T-cell poiesis (2). In summary, we demonstrate that repopulation of the hematopoietic system can be achieved with preselected clones of genetically manipulated stem cells in which a) the insertion site of the retroviral (gene therapy) vector has been characterized prior to transplantation and b) in which ectopic HOXB4 has to be expressed above a certain threshold level. Thus, ES cells carry the potential for performing safe somatic gene therapy when using integrating gene therapy vectors. Nevertheless, advanced cell therapy will certainly require the expression of HOXB4 in a regulated manner to avoid unwanted effects such as disturbed lineage differentiation.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Christina L. Parker ◽  
Timothy M. Jacobs ◽  
Justin T. Huckaby ◽  
Dimple Harit ◽  
Samuel K. Lai

ABSTRACT Despite their exceptional potencies, the broad tropism of most commonly used lentivirus (LV) vectors limits their use for targeted gene delivery in vivo. We hypothesized that we could improve the specificity of LV targeting by coupling (i) reduction of their binding to off-target cells with (ii) redirection of the vectors with a bispecific antibody (bsAb) that binds both LV and receptors on target cells. As a proof of concept, we pseudotyped nonreplicating LV using a mutated Sindbis envelope (mSindbis) with ablated binding to native receptors, while retaining the capacity to facilitate efficient fusion and endosomal escape. We then evaluated the transduction potencies of the mSindbis LV for HER2-positive (HER2+) (SKBR3) breast and HER2-negative (HER2−) (A2780) cells when redirected with different bsAbs. mSindbis LV alone failed to induce appreciable green fluorescent protein (GFP) expression in either cell. When mixed with HER2-targeting bsAb, mSindbis LV was exceptionally potent, transducing 12% to 16% of the SKBR3 cells at a multiplicity of infection (MOI [ratio of viral genome copies to target cells]) of 3. Transduction was highly specific, resulting in ∼50-fold-greater selectivity toward SKBR3 cells versus A2780 cells. Redirecting mSindbis LV led to a 10-fold improvement in cell-specific targeting compared to redirecting wild-type Sindbis LV with the same bsAb, underscoring the importance of ablating native virus tropism in order to maximize targeting specificity. The redirection of mutated LV using bsAb represents a potent and highly versatile platform for targeted gene therapy. IMPORTANCE The goal of gene therapy is specific delivery and expression of therapeutic genes to target cells and tissues. Common lentivirus (LV) vectors are efficient gene delivery vehicles but offer little specificity. Here, we report an effective and versatile strategy to redirect LV to target cells using bispecific antibodies (bsAbs) that bind both cell receptors and LV envelope domains. Importantly, we ablated the native receptor binding of LV to minimize off-target transduction. Coupling bsAb specificity and ablated native LV tropism synergistically enhanced the selectivity of our targeted gene delivery system. The modular nature of our bsAb-based redirection enables facile targeting of the same LV to diverse tissues/cells. By abrogating the native broad tropism of LV, our bsAb-LV redirection strategy may enable lentivirus-based gene delivery in vivo, expanding the current use of LV beyond ex vivo applications.


1991 ◽  
Vol 5 (3) ◽  
pp. 423-432 ◽  
Author(s):  
Charles Hesdorffer ◽  
Dina Markowitz ◽  
Maureen Ward ◽  
Arthur Bank

2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


1995 ◽  
Vol 6 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Ayman Al-Hendy ◽  
Gonzalo Hortelano ◽  
Gloria S. Tannenbaum ◽  
Patricia L. Chang

2021 ◽  
Vol 22 (14) ◽  
pp. 7545
Author(s):  
Myriam Sainz-Ramos ◽  
Idoia Gallego ◽  
Ilia Villate-Beitia ◽  
Jon Zarate ◽  
Iván Maldonado ◽  
...  

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


2009 ◽  
Vol 17 (9) ◽  
pp. 1651-1657 ◽  
Author(s):  
Sant P Chawla ◽  
Victoria S Chua ◽  
Lita Fernandez ◽  
Doris Quon ◽  
Andreh Saralou ◽  
...  

1995 ◽  
Vol 121 (S1) ◽  
pp. S37-S37
Author(s):  
M. L. Birnstiel ◽  
T. Schweighoffer ◽  
W. Schmidt ◽  
K. Zatloukal ◽  
G. Maass

Sign in / Sign up

Export Citation Format

Share Document