Membrane fouling in a fermentative hydrogen producing membrane bioreactor at different organic loading rates

2010 ◽  
Vol 360 (1-2) ◽  
pp. 226-233 ◽  
Author(s):  
Lihong Shen ◽  
Yunan Zhou ◽  
Basuvaraj Mahendran ◽  
David M. Bagley ◽  
Steven N. Liss
2009 ◽  
Vol 60 (3) ◽  
pp. 605-614 ◽  
Author(s):  
Fathi Aloui ◽  
Firas Fki ◽  
Slim Loukil ◽  
Sami Sayadi

Landfill leachate (LFL) is a very complex wastewater that poses considerable hazards to local communities and the environment. With this concern in mind, the present study was undertaken to investigate the performance of an aerobic membrane bioreactor treating raw LFL from Djebel Chekir (Tunisia) discharge. The LFL samples collected from this site were found to be highly loaded with organic matter, ammonia, salts, greases, phenols and hydrocarbons. Important removals of chemical oxygen demand (COD) and NH4+-N were attained after 44 days of treatment at optimum conditions for the membrane and with organic loading rates (OLR) of 1.9 and 2.7 grams COD per litter and day. This treatment allowed for an important detoxification of the landfill leachates and a significant elimination of the microorganisms. Electrochemical oxidation using Pi/Ti was applied as a post-treatment and after the biological process in order to reduce the residual ammonia and COD. At a pH value of 9, current density of 4 A dm−2 and electrolysis time of 60 minutes, COD and ammonia nitrogen were reduced to 1,000 mg L−1 and 27 mg L−1, respectively. COD and NH4+-N removals were accompanied by significant detoxification.


2009 ◽  
Vol 85 (2) ◽  
pp. 383-388 ◽  
Author(s):  
Yu-Chuan Juang ◽  
Sunil S. Adav ◽  
Duu-Jong Lee ◽  
Juin-Yih Lai

2010 ◽  
Vol 113-116 ◽  
pp. 1280-1284 ◽  
Author(s):  
Yu Tian ◽  
Xin Ying Su ◽  
Lin Chen ◽  
Tian Ling Jiang

The membrane fouling behaviors and fouling mechanism of filamentous bulking sludge in membrane bioreactor (MBR) have been reported in recent studies. However, few studies have been conducted towards the causes and control of filamentous bulking sludge in MBR. In order to make clear the conditions of filamentous bacteria overgrowth in MBR, the impact of DO and organic loading rate on filamentous growth and its characteristics were investigated in this paper. The results showed that overgrowth of filamentous bacteria occurred under a relatively high substrate concentration (organic loading rate was 0.61 KgCOD/(KgMLSS•d), and DO was above 2 mg/L) in MBR. Nutrient removal effect can not be deteriorated under filamentous bulking sludge, with average 95, 57 and 92% removal efficiencies of COD, TN and TP respectively. The particle size of filamentous sludge was larger than that of normal sludge and the filamentous bacteria produced more SMP and EPS than floc forming bacteria.


Sign in / Sign up

Export Citation Format

Share Document