scholarly journals Extended performance study of forward osmosis during wastewater reclamation: Quantification of fouling-based concentration polarization effects on the flux decline

2021 ◽  
Vol 618 ◽  
pp. 118755 ◽  
Author(s):  
Thanh-Tin Nguyen ◽  
Rusnang Syamsul Adha ◽  
Robert W. Field ◽  
In S. Kim
Author(s):  
Gemima Santos Arcanjo ◽  
Carolina Rodrigues Dos Santos ◽  
Flávia Cristina Rodrigues Costa ◽  
Isabela Ferreira Batista ◽  
Míriam Cristina Santos Amaral

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 573
Author(s):  
Pelin Oymaci ◽  
Pauline E. Offeringa ◽  
Zandrie Borneman ◽  
Kitty Nijmeijer

Forward osmosis (FO) is an emerging process to dewater whey streams energy efficiently. The driving force for the process is the concentration gradient between the feed (FS) and the concentrated draw (DS) solution. Here we investigate not only the effect of the DS concentration on the performance, but also that of the FS is varied to maintain equal driving force at different absolute concentrations. Experiments with clean water as feed reveal a flux increase at higher osmotic pressure. When high product purities and thus low reverse salt fluxes are required, operation at lower DS concentrations is preferred. Whey as FS induces severe initial flux decline due to instantaneous protein fouling of the membrane. This is mostly due to reversible fouling, and to a smaller extent to irreversible fouling. Concentration factors in the range of 1.2–1.3 are obtained. When 0.5 M NaCl is added to whey as FS, clearly lower fluxes are obtained due to more severe concentration polarization. Multiple runs over longer times show though that irreversible fouling is fully suppressed due to salting in/out effects and flux decline is the result of reversible fouling only.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.


2014 ◽  
Vol 535 ◽  
pp. 744-748
Author(s):  
Sheng Ji Xia ◽  
Yu Min Zhou ◽  
Jian Wei Chen ◽  
Rui Lin Yang ◽  
Xin Huan Zhang

Forward osmosis is an emerging membrane technology with potential applications in desalination and wastewater reclamation, osmotic pressure gradient cross the FO membrane is used to generate water flux. In contrast with conventional pressure-driving membrane process, the advantage of FO is significant: energy saving, high solute rejection and low fouling propensity. In this study, alginic acid (AA), boving serum albumin (BSA), humic acid (HA) and tannic acid (TA) were used to investigate the influence of organic fouling. The flux changed obviously, the rejection was approving and the absorption of organics was observed in the study. Ultrasonic oscillation was employed to wipe the organics off the fouling membranes, which was intend to study the quality of absorption of organic matters.


Sign in / Sign up

Export Citation Format

Share Document