scholarly journals Effect of Osmotic Pressure on Whey Protein Concentration in Forward Osmosis

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 573
Author(s):  
Pelin Oymaci ◽  
Pauline E. Offeringa ◽  
Zandrie Borneman ◽  
Kitty Nijmeijer

Forward osmosis (FO) is an emerging process to dewater whey streams energy efficiently. The driving force for the process is the concentration gradient between the feed (FS) and the concentrated draw (DS) solution. Here we investigate not only the effect of the DS concentration on the performance, but also that of the FS is varied to maintain equal driving force at different absolute concentrations. Experiments with clean water as feed reveal a flux increase at higher osmotic pressure. When high product purities and thus low reverse salt fluxes are required, operation at lower DS concentrations is preferred. Whey as FS induces severe initial flux decline due to instantaneous protein fouling of the membrane. This is mostly due to reversible fouling, and to a smaller extent to irreversible fouling. Concentration factors in the range of 1.2–1.3 are obtained. When 0.5 M NaCl is added to whey as FS, clearly lower fluxes are obtained due to more severe concentration polarization. Multiple runs over longer times show though that irreversible fouling is fully suppressed due to salting in/out effects and flux decline is the result of reversible fouling only.

Author(s):  
James R. L. Koch ◽  
Ramesh K. Agarwal

Forward Osmosis (FO) driven asymmetric membrane filtration is a developing technology which shows promise for seawater desalination and wastewater treatment. Due to the fact that asymmetric membranes are widely used in conjunction with this technology, internal concentration polarization (ICP), a flow-entrainment effect occurring within such membranes, is a significant if not dominant source of overall osmotic pressure loss across the membrane. Accurate modeling of ICP effects is therefore very critical for accurate Computational Fluid Dynamic (CFD) modeling of asymmetric membranes. A related, dilutive effect known as external concentration polarization (ECP) also develops on both the rejection and draw sides of the membrane, further contributing to osmotic pressure loss. In order to increase the overall water flux, circular spacers can be implemented within the draw channel of FO cross-flow membrane exchange units to decrease the effects of ICP and draw ECP. The drawback of spacer inclusions is an increased pressure loss across the length of the feed channel. The system efficiency gained by the decrease in ECP must therefore be weighed against the energy cost of hydraulically making up lost channel pressure. To model the geometry of a FO cross-flow channel, the open source CFD package OpenFOAM is used. A compressible flow model with explicit boundary conditions is developed to simulate the flux transfer and ICP effects present within an asymmetric membrane when exposed to a NaCl solution. Results are validated by comparison with the numerical data generated by earlier models of asymmetric membranes implemented by other investigators using similar simulation conditions.


Author(s):  
James R. L. Koch ◽  
Ramesh K. Agarwal

Forward Osmosis (FO) driven asymmetric membrane filtration is a developing technology which shows promise for seawater desalination and wastewater treatment. Due to the fact that asymmetric membranes are widely used in conjunction with this technology, internal concentration polarization (ICP), a flow-entrainment effect occurring within such membranes, is a significant if not dominant source of overall osmotic pressure loss across the membrane. Accurate modeling of ICP effects is therefore very critical for accurate Computational Fluid Dynamic (CFD) modeling of asymmetric membranes. A related, dilutive effect known as external concentration polarization (ECP) also develops on both the rejection and draw sides of the membrane, further contributing to osmotic pressure loss. In order to increase the overall water flux, circular spacers can be implemented within the draw channel of FO cross-flow membrane exchange units to decrease the effects of ICP and draw ECP. The drawback of spacer inclusions is an increased pressure loss across the length of the feed channel. The system efficiency gained by the decrease in ECP must therefore be weighed against the energy cost of hydraulically making up lost channel pressure. To model the geometry of a FO cross-flow channel, the open source CFD package OpenFOAM is used. A compressible flow model with explicit boundary conditions is developed to simulate the flux transfer and ICP effects present within an asymmetric membrane when exposed to a NaCl solution. Results are validated by comparison with the numerical data generated by earlier models of asymmetric membranes implemented by other investigators using similar simulation conditions.


2010 ◽  
Vol 62 (6) ◽  
pp. 1353-1360 ◽  
Author(s):  
Jian-Jun Qin ◽  
Kiran A. Kekre ◽  
Maung H. Oo ◽  
Guihe Tao ◽  
Chee L. Lay ◽  
...  

Preliminary study on a novel osmotic membrane bioreactor (OMBR) was explored. Objective of this study was to investigate the effects of draw solution on membrane flux and air scouring at the feed side on fouling tendency in a pilot OMBR system composing the anoxic/aerobic and forward osmosis (FO) processes. Domestic sewage was the raw feed, FO membrane from HTI and NaCl/MgSO4 draw solutions were used in the experiments. Fluxes of 3 l/m2/h (LMH) and 7.2 LMH were achieved at osmotic pressure of 5 and 22.4 atm, respectively. No significant flux decline was observed at 3 LMH over 190 h and at 7.2 LMH over 150 h when air scouring was provided at the feed side of the membrane. However, without air scouring, the flux at 22.4 atm osmotic pressure declined by 30% after 195 h and then levelled off. The potential advantages of the fouling reversibility with air scouring under the operating conditions of the pilot OMBR and better water quality in OMBR over the conventional MBR were preliminarily demonstrated.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 588
Author(s):  
Eiji Kamio ◽  
Hiroki Kurisu ◽  
Tomoki Takahashi ◽  
Atsushi Matsuoka ◽  
Tomohisa Yoshioka ◽  
...  

Forward osmosis (FO) membrane process is expected to realize energy-saving seawater desalination. To this end, energy-saving water recovery from a draw solution (DS) and effective DS regeneration are essential. Recently, thermo-responsive DSs have been developed to realize energy-saving water recovery and DS regeneration. We previously reported that high-temperature reverse osmosis (RO) treatment was effective in recovering water from a thermo-responsive ionic liquid (IL)-based DS. In this study, to confirm the advantages of the high-temperature RO operation, thermo-sensitive IL-based DS was treated by an RO membrane at temperatures higher than the lower critical solution temperature (LCST) of the DS. Tetrabutylammonium 2,4,6-trimethylbenznenesulfonate ([N4444][TMBS]) with an LCST of 58 °C was used as the DS. The high-temperature RO treatment was conducted at 60 °C above the LCST using the [N4444][TMBS]-based DS-lean phase after phase separation. Because the [N4444][TMBS]-based DS has a significantly temperature-dependent osmotic pressure, the DS-lean phase can be concentrated to an osmotic pressure higher than that of seawater at room temperature (20 °C). In addition, water can be effectively recovered from the DS-lean phase until the DS concentration increased to 40 wt%, and the final DS concentration reached 70 wt%. From the results, the advantages of RO treatment of the thermo-responsive DS at temperatures higher than the LCST were confirmed.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


Author(s):  
Mehdi Habibollahzadeh ◽  
Juran Noh ◽  
Liang Feng ◽  
Hong-Cai Zhou ◽  
Ahmed Abdel-Wahab ◽  
...  

High water flux and salt selectivity have been the most demanding goals for osmosis-based membranes. Osmotic pressure differences across membranes are particularly important in emerging forward osmosis and pressure retarded...


Sign in / Sign up

Export Citation Format

Share Document