scholarly journals Application of forward osmosis in reusing the brackish concentrate produced in reverse osmosis plants with secondary treated wastewater as feed solution: a case study

2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.

2015 ◽  
Vol 72 (8) ◽  
pp. 1301-1307 ◽  
Author(s):  
Nguyen Cong Nguyen ◽  
Hau Thi Nguyen ◽  
Shiao-Shing Chen ◽  
Nhat Thien Nguyen ◽  
Chi-Wang Li

Forward osmosis (FO) is an emerging process for dewatering solid–liquid stream which has the potential to be innovative and sustainable. However, the applications have still been hindered by low water flux and membrane fouling when activated sludge is used as the feed solution due to bound water from microbial cells. Hence, a novel strategy was designed to increase sludge thickening and reduce membrane fouling in the FO process under ultrasonic condition. The results from the ultrasound/FO hybrid system showed that the sludge concentration reached up to 20,400 and 28,400 mg/L from initial sludge concentrations of 3000 and 8000 mg/L with frequency of 40 kHz after 22 hours, while the system without ultrasound had to spend 26 hours to achieve the same sludge concentration. This identifies that the presence of ultrasound strongly affected sludge structure as well as sludge thickening of the FO process. Furthermore, the ultrasound/FO hybrid system could achieve NH4+-N removal efficiency of 96%, PO43−-P of 98% and dissolved organic carbon (DOC) of 99%. The overall performance demonstrates that the proposed ultrasound/FO system using seawater as a draw solution is promising for sludge thickening application.


2011 ◽  
Vol 64 (7) ◽  
pp. 1443-1449 ◽  
Author(s):  
Kerusha Lutchmiah ◽  
Emile R. Cornelissen ◽  
Danny J. H. Harmsen ◽  
Jan W. Post ◽  
Keith Lampi ◽  
...  

This research is part of the Sewer Mining project aimed at developing a new technological concept by extracting water from sewage by means of forward osmosis (FO). FO, in combination with a reconcentration system, e.g. reverse osmosis (RO) is used to recover high-quality water. Furthermore, the subsequent concentrated sewage (containing an inherent energy content) can be converted into a renewable energy (RE) source (i.e. biogas). The effectiveness of FO membranes in the recovery of water from sewage has been evaluated. Stable FO water flux values (>4.3 LMH) were obtained with primary effluent (screened, not treated) used as the feed solution. Fouling of the membrane was also induced and further investigated. Accumulated fouling was found to be apparent, but not irreversible. Sewer Mining could lead to a more economical and sustainable treatment of wastewater, facilitating the extraction of water and energy from sewage and changing the way it is perceived: not as waste, but as a resource.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 243
Author(s):  
Majeda Khraisheh ◽  
Mona Gulied ◽  
Fares AlMomani

Fertilizer-drawn forward osmosis (FDFO) has garnered immense attention for its application in the agricultural field and its potential to reuse wastewater sustainably. Membrane fouling, however, remains to be a challenge for the process. This study aims to investigate the influence of membrane fouling on the performance of the FDFO process. Synthetic wastewater (SWW) and multi-component fertilizer (MCF) were used as feed solution (FS) and draw solution (DS) with cellulose triacetate (CTA) forward osmosis (FO) membrane orientation. The performance was evaluated through water flux (WF), percentage recovery and percentage of salt reject. The WF declined from 10.32 LMH (L/m2·h) to 3.30 LMH when ultra-pure water as FS was switched with concentration FS indicating the dependence of the performance on the type of FS used. Accelerated fouling experiments conducted to verify the fouling behavior showed a decline in the water flux from 8.6 LMH to 3.09 LMH with SWW and 13.1 LMH to 3.42 LMH when deionized water was used as FS. The effects of osmotic backwashing and in situ flushing as physical cleaning methods of the foul membrane were studied through water flux and salt recovery percentage. Both cleaning methods yielded a WF close to the baseline. Osmotic backwashing yielded better results by eliminating foulant–foulant and foulant–membrane adhesion. The cleaning methods were able to recover 75% of phosphate and 60% of nitrate salts. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) results validated the effectiveness of the methods for the physical cleaning of foul membranes. This study underlines the importance of the FS used in FDFO and the effectiveness of osmotic backwashing as a cleaning method of FO membranes.


2010 ◽  
Vol 62 (6) ◽  
pp. 1353-1360 ◽  
Author(s):  
Jian-Jun Qin ◽  
Kiran A. Kekre ◽  
Maung H. Oo ◽  
Guihe Tao ◽  
Chee L. Lay ◽  
...  

Preliminary study on a novel osmotic membrane bioreactor (OMBR) was explored. Objective of this study was to investigate the effects of draw solution on membrane flux and air scouring at the feed side on fouling tendency in a pilot OMBR system composing the anoxic/aerobic and forward osmosis (FO) processes. Domestic sewage was the raw feed, FO membrane from HTI and NaCl/MgSO4 draw solutions were used in the experiments. Fluxes of 3 l/m2/h (LMH) and 7.2 LMH were achieved at osmotic pressure of 5 and 22.4 atm, respectively. No significant flux decline was observed at 3 LMH over 190 h and at 7.2 LMH over 150 h when air scouring was provided at the feed side of the membrane. However, without air scouring, the flux at 22.4 atm osmotic pressure declined by 30% after 195 h and then levelled off. The potential advantages of the fouling reversibility with air scouring under the operating conditions of the pilot OMBR and better water quality in OMBR over the conventional MBR were preliminarily demonstrated.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 70
Author(s):  
Jasir Jawad ◽  
Alaa H. Hawari ◽  
Syed Javaid Zaidi

The forward osmosis (FO) process is an emerging technology that has been considered as an alternative to desalination due to its low energy consumption and less severe reversible fouling. Artificial neural networks (ANNs) and response surface methodology (RSM) have become popular for the modeling and optimization of membrane processes. RSM requires the data on a specific experimental design whereas ANN does not. In this work, a combined ANN-RSM approach is presented to predict and optimize the membrane flux for the FO process. The ANN model, developed based on an experimental study, is used to predict the membrane flux for the experimental design in order to create the RSM model for optimization. A Box–Behnken design (BBD) is used to develop a response surface design where the ANN model evaluates the responses. The input variables were osmotic pressure difference, feed solution (FS) velocity, draw solution (DS) velocity, FS temperature, and DS temperature. The R2 obtained for the developed ANN and RSM model are 0.98036 and 0.9408, respectively. The weights of the ANN model and the response surface plots were used to optimize and study the influence of the operating conditions on the membrane flux.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


2015 ◽  
Vol 15 (10) ◽  
pp. 8279-8284 ◽  
Author(s):  
Hee-Man Yang ◽  
Hye Min Choi ◽  
Sung-Chan Jang ◽  
Myeong Jin Han ◽  
Bum-Kyoung Seo ◽  
...  

Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPGMNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 78
Author(s):  
Bin Liu ◽  
Meng Wang ◽  
Kaihan Yang ◽  
Guangchao Li ◽  
Zhou Shi

In order to alleviate membrane fouling and improve removal efficiency, a series of pretreatment technologies were applied to the ultrafiltration process. In this study, ClO2 was used as a pre-oxidation strategy for the ultrafiltration (UF) process. Humic acid (HA), sodium alginate (SA), and bovine serum albumin (BSA) were used as three typical organic model foulants, and the mixture of the three substances was used as a representation of simulated natural water. The dosages of ClO2 were 0.5, 1, 2, 4, and 8 mg/L, with 90 min pre-oxidation. The results showed that ClO2 pre-oxidation at low doses (1–2 mg/L) could alleviate the membrane flux decline caused by humus, polysaccharides, and simulated natural water, but had a limited alleviating effect on the irreversible resistance of the membrane. The interfacial free energy analysis showed that the interaction force between the membrane and the simulated natural water was also repulsive after the pre-oxidation, indicating that ClO2 pre-oxidation was an effective way to alleviate cake layer fouling by reducing the interaction between the foulant and the membrane. In addition, ClO2 oxidation activated the hidden functional groups in the raw water, resulting in an increase in the fluorescence value of humic analogs, but had a good removal effect on the fluorescence intensity of BSA. Furthermore, the membrane fouling fitting model showed that ClO2, at a low dose (1 mg/L), could change the mechanism of membrane fouling induced by simulated natural water from standard blocking and cake layer blocking to critical blocking. Overall, ClO2 pre-oxidation was an efficient pretreatment strategy for UF membrane fouling alleviation, especially for the fouling control of HA and SA at low dosages.


Sign in / Sign up

Export Citation Format

Share Document