Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells

Metabolism ◽  
2015 ◽  
Vol 64 (3) ◽  
pp. 428-437 ◽  
Author(s):  
Junna Song ◽  
Jia Li ◽  
Fangjie Hou ◽  
Xiaona Wang ◽  
Baolin Liu
2018 ◽  
Author(s):  
Yong Yang ◽  
Jianxin Li ◽  
Ting-Li Han ◽  
Xiaobo Zhou ◽  
Hongbo Qi ◽  
...  

AbstractPreeclampsia (PE) development is often associated with placental immune and inflammatory dysregulation, as well as endoplasmic reticulum (ER) stress. However, the mechanisms linking ER stress and inflammatory dysregulation to PE have not been clarified. It has been reported that thioredoxin-interacting protein (TXNIP), which can bind with and activate the NLR family pyrin domain containing 3 (NLRP3) inflammasome, plays a critical role in immune regulation. Recent experimental evidence suggests that activated NLRP3 inflammasomes can activate interleukin-1β (IL-1β) production in the placenta of patients with PE. The objective of the current study was to explore if TXNIP plays a critical signaling role linking ER stress with NLRP3 inflammasome activation in PE. We hypothesised that ER stress would induce TXNIP production, which would bind with NLRP3 inflammasomes to activate IL-1β production. HTR8/SVneo cells were subjected to six hours hypoxia followed by six hours reoxygenation (H/R). These cells showed a higher protein level of NLRP3 and IL-1β, as well as a higher enzymatic activity of caspase-1, indicating enhanced inflammatory dysregulation and ER stress. Cells transfected with TXNIP siRNA showed reduced NLRP3 inflammasome activation. Cells treated with 4-phenylbutyric acid, an inhibitor of ER stress, showed a similar result. In addition, the outgrowth of explant with TXNIP lentivirus in H/R or Tunicamycin (inducers of ER stress) was also measured to verify our hypothesis. These findings demonstrated that TXNIP could influence inflammatory dysregulation by mediating ER stress and NLRP3 inflammasome activation in PE. This novel mechanism may further explain the inflammation observed at the maternal-fetal interface, which leads to placental dysfunction in a patient with PE.


Shock ◽  
2014 ◽  
Vol 41 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Li Diao ◽  
Alexandra H. Marshall ◽  
Xiaojing Dai ◽  
Elena Bogdanovic ◽  
Abdikarim Abdullahi ◽  
...  

2021 ◽  
Author(s):  
Xiaohui Zhang ◽  
Kelaier Yang ◽  
Jinyu Chi ◽  
Wenjia Chen ◽  
Xiao Ma ◽  
...  

Abstract Human recombinant relaxin-3 (H3 relaxin ),a small molecule peptide hormone, ameliorated myocardial injury after myocardial infarction or isoprenaline injection by inhibiting apoptosis and fibrosis. However, whether H3 relaxin protects vascular function in rats with type 1 diabetes and its mechanism are unknown. In type 1 diabetes rats model induced by streptozotocin (STZ), rats were subcutaneously injected H3 relaxin (2 µg/kg/d or 0.2 µg/kg/d) for 2 weeks. At 4 or 8 weeks after STZ injection, we detected the expression of fibrosis (type I and III collagen), ERS (endoplasmic reticulum stress) and NLRP3 inflammasome activation in the aortas and inflammation markers in the plasma from rats with diabetes. Compared with the diabetic rats, H3 relaxin treatment exhibited markedly decreased plasma oxidative stress markers (TNF-a and MDA) levels. The protein expression levels of type I and III collagen in the aortas were increased in rats with diabetes, inhibited by H3 relaxin. H3 relaxin treatment inhibited ERS (GRP78 and CHOP) and NLRP3 inflammasome activation in the aortas of diabetic rats. These results suggest that H3 relaxin inhibited fibrosis, ERS and inflammation activation in the aortas of type 1 diabetic rats.


Sign in / Sign up

Export Citation Format

Share Document