scholarly journals In vivo studies on Citrobacter rodentium and host cell death pathways

2021 ◽  
Vol 64 ◽  
pp. 60-67
Author(s):  
Vik Ven Eng ◽  
Jaclyn S Pearson
mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Eun Jung Thak ◽  
Su-Bin Lee ◽  
Shengjie Xu-Vanpala ◽  
Dong-Jik Lee ◽  
Seung-Yeon Chung ◽  
...  

ABSTRACT Cryptococcus neoformans is a human-pathogenic fungal pathogen that causes life-threatening meningoencephalitis in immunocompromised individuals. To investigate the roles of N-glycan core structure in cryptococcal pathogenicity, we constructed mutant strains of C. neoformans with defects in the assembly of lipid-linked N-glycans in the luminal side of the endoplasmic reticulum (ER). Deletion of ALG3 (alg3Δ), which encodes dolichyl-phosphate-mannose (Dol-P-Man)-dependent α-1,3-mannosyltransferase, resulted in the production of truncated neutral N-glycans carrying five mannose residues as a major species. Despite moderate or nondetectable defects in virulence-associated phenotypes in vitro, the alg3Δ mutant was avirulent in a mouse model of systemic cryptococcosis. Notably, the mutant did not show defects in early stages of host cell interaction during infection, including attachment to lung epithelial cells, opsonic/nonopsonic phagocytosis, and manipulation of phagosome acidification. However, the ability to drive macrophage cell death was greatly decreased in this mutant, without loss of cell wall remodeling capacity. Furthermore, deletion of ALG9 and ALG12, encoding Dol-P-Man-dependent α-1,2-mannosyltransferases and α-1,6-mannosyltransferases, generating truncated core N-glycans with six and seven mannose residues, respectively, also displayed remarkably reduced macrophage cell death and in vivo virulence. However, secretion levels of interleukin-1β (IL-1β) were not reduced in the bone marrow-derived dendritic cells obtained from Asc- and Gsdmd-deficient mice infected with the alg3Δ mutant strain, excluding the possibility that pyroptosis is a main host cell death pathway dependent on intact core N-glycans. Our results demonstrated N-glycan structures as a critical feature in modulating death of host cells, which is exploited by as a strategy for host cell escape for dissemination of C. neoformans. IMPORTANCE We previously reported that the outer mannose chains of N-glycans are dispensable for the virulence of C. neoformans, which is in stark contrast to findings for the other human-pathogenic yeast, Candida albicans. Here, we present evidence that an intact core N-glycan structure is required for C. neoformans pathogenicity by systematically analyzing alg3Δ, alg9Δ, and alg12Δ strains that have defects in lipid-linked N-glycan assembly and in in vivo virulence. The alg null mutants producing truncated core N-glycans were defective in inducing host cell death after phagocytosis, which is triggered as a mechanism of pulmonary escape and dissemination of C. neoformans, thus becoming inactive in causing fatal infection. The results clearly demonstrated the critical features of the N-glycan structure in mediating the interaction with host cells during fungal infection. The delineation of the roles of protein glycosylation in fungal pathogenesis not only provides insight into the glycan-based fungal infection mechanism but also will aid in the development of novel antifungal agents.


2015 ◽  
Vol 213 (7) ◽  
pp. 1198-1207 ◽  
Author(s):  
Zhengguo Zhang ◽  
Ming Wang ◽  
Florian Eisel ◽  
Svetlin Tchatalbachev ◽  
Trinad Chakraborty ◽  
...  

Pathogens ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 8 ◽  
Author(s):  
Courtney McDougal ◽  
John-Demian Sauer

Listeria monocytogenes has evolved exquisite mechanisms for invading host cells and spreading from cell-to-cell to ensure maintenance of its intracellular lifecycle. As such, it is not surprising that loss of the intracellular replication niche through induction of host cell death has significant implications on the development of disease and the subsequent immune response. Although L. monocytogenes can activate multiple pathways of host cell death, including necrosis, apoptosis, and pyroptosis, like most intracellular pathogens L. monocytogenes has evolved a series of adaptations that minimize host cell death to promote its virulence. Understanding how L. monocytogenes modulates cell death during infection could lead to novel therapeutic approaches. In addition, as L. monocytogenes is currently being developed as a tumor immunotherapy platform, understanding how cell death pathways influence the priming and quality of cell-mediated immunity is critical. This review will focus on the mechanisms by which L. monocytogenes modulates cell death, as well as the implications of cell death on acute infection and the generation of adaptive immunity.


2011 ◽  
Vol 195 (6) ◽  
pp. 931-942 ◽  
Author(s):  
Hiroshi Ashida ◽  
Hitomi Mimuro ◽  
Michinaga Ogawa ◽  
Taira Kobayashi ◽  
Takahito Sanada ◽  
...  

Host cell death is an intrinsic immune defense mechanism in response to microbial infection. However, bacterial pathogens use many strategies to manipulate the host cell death and survival pathways to enhance their replication and survival. This manipulation is quite intricate, with pathogens often suppressing cell death to allow replication and then promoting it for dissemination. Frequently, these effects are exerted through modulation of the mitochondrial pro-death, NF-κB–dependent pro-survival, and inflammasome-dependent host cell death pathways during infection. Understanding the molecular details by which bacterial pathogens manipulate cell death pathways will provide insight into new therapeutic approaches to control infection.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dominique Missiakas ◽  
Volker Winstel

Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Teresa Krakauer

Inflammasome activation is an innate host defense mechanism initiated upon sensing pathogens or danger in the cytosol. Both autophagy and cell death are cell autonomous processes important in development, as well as in host defense against intracellular bacteria. Inflammasome, autophagy, and cell death pathways can be activated by pathogens, pathogen-associated molecular patterns (PAMPs), cell stress, and host-derived damage-associated molecular patterns (DAMPs). Phagocytosis and toll-like receptor (TLR) signaling induce reactive oxygen species (ROS), type I IFN, NFκB activation of proinflammatory cytokines, and the mitogen-activated protein kinase cascade. ROS and IFNγare also prominent inducers of autophagy. Pathogens, PAMPs, and DAMPs activate TLRs and intracellular inflammasomes, inducing apoptotic and inflammatory caspases in a context-dependent manner to promote various forms of cell death to eliminate pathogens. Common downstream signaling molecules of inflammasomes, autophagy, and cell death pathways interact to initiate appropriate measures against pathogens and determine host survival as well as pathological consequences of infection. The integration of inflammasome activation, autophagy, and cell death is central to pathogen clearance. Various pathogens produce virulence factors to control inflammasomes, subvert autophagy, and modulate host cell death in order to evade host defense. This review highlights the interaction of inflammasomes, autophagy, and host cell death pathways in counteractingBurkholderia pseudomallei, the causative agent of melioidosis. Contrasting evasion strategies used byB.pseudomallei,Mycobacterium tuberculosis, andLegionella pneumophilato avoid and dampen these innate immune responses will be discussed.


2021 ◽  
Author(s):  
Ye Mon Soe ◽  
Sammy Bedoui ◽  
Timothy P. Stinear ◽  
Abderrahman Hachani

Sign in / Sign up

Export Citation Format

Share Document