Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain

2008 ◽  
Vol 44 (4) ◽  
pp. 329-338 ◽  
Author(s):  
Francisco Odencio Rodrigues de Oliveira ◽  
Carlos Roberto Alves ◽  
Cláudia Magalhães Calvet ◽  
Leny Toma ◽  
Rodrigo Ippolito Bouças ◽  
...  
Parasitology ◽  
2012 ◽  
Vol 140 (2) ◽  
pp. 171-180 ◽  
Author(s):  
F. O. R. OLIVEIRA-JR ◽  
C. R. ALVES ◽  
F. S. SILVA ◽  
L. M. C. CÔRTES ◽  
L. TOMA ◽  
...  

SUMMARYHeparin-binding proteins (HBPs) play a key role in Trypanosoma cruzi-host cell interactions. HBPs recognize heparan sulfate (HS) at the host cell surface and are able to induce the cytoadherence and invasion of this parasite. Herein, we analysed the biochemical properties of the HBPs and also evaluated the expression and subcellular localization of HBPs in T. cruzi trypomastigotes. A flow cytometry analysis revealed that HBPs are highly expressed at the surface of trypomastigotes, and their peculiar localization mainly at the flagellar membrane, which is known as an important signalling domain, may enhance their binding to HS and elicit the parasite invasion. The plasmon surface resonance results demonstrated the stability of HBPs and their affinity to HS and heparin. Additionally, gelatinolytic activities of 70 kDa, 65·8 kDa and 59 kDa HBPs over a broad pH range (5·5–8·0) were revealed using a zymography assay. These proteolytic activities were sensitive to serine proteinase inhibitors, such as aprotinin and phenylmethylsulfonyl fluoride, suggesting that HBPs have the properties of trypsin-like proteinases.


Parasitology ◽  
2012 ◽  
Vol 139 (6) ◽  
pp. 735-743 ◽  
Author(s):  
F. O. R. OLIVEIRA ◽  
C. R. ALVES ◽  
F. SOUZA-SILVA ◽  
C. M. CALVET ◽  
L. M. C. CÔRTES ◽  
...  

SUMMARYHeparin-binding proteins (HBPs) have been demonstrated in both infective forms of Trypanosoma cruzi and are involved in the recognition and invasion of mammalian cells. In this study, we evaluated the potential biological function of these proteins during the parasite-vector interaction. HBPs, with molecular masses of 65·8 kDa and 59 kDa, were isolated from epimastigotes by heparin affinity chromatography and identified by biotin-conjugated sulfated glycosaminoglycans (GAGs). Surface plasmon resonance biosensor analysis demonstrated stable receptor-ligand binding based on the association and dissociation values. Pre-incubation of epimastigotes with GAGs led to an inhibition of parasite binding to immobilized heparin. Competition assays were performed to evaluate the role of the HBP-GAG interaction in the recognition and adhesion of epimastigotes to midgut epithelial cells of Rhodnius prolixus. Epithelial cells pre-incubated with HBPs yielded a 3·8-fold inhibition in the adhesion of epimastigotes. The pre-treatment of epimastigotes with heparin, heparan sulfate and chondroitin sulfate significantly inhibited parasite adhesion to midgut epithelial cells, which was confirmed by scanning electron microscopy. We provide evidence that heparin-binding proteins are found on the surface of T. cruzi epimastigotes and demonstrate their key role in the recognition of sulfated GAGs on the surface of midgut epithelial cells of the insect vector.


1988 ◽  
Vol 106 (3) ◽  
pp. 931-943 ◽  
Author(s):  
G Mugnai ◽  
K Lewandowska ◽  
B Carnemolla ◽  
L Zardi ◽  
L A Culp

Attachment and neurite extension have been measured when Platt or La-N1 human neuroblastoma cells respond to tissue culture substrata coated with a panel of complementary fragments from the individual chains of human plasma (pFN) or cellular fibronectins (cFN) purified from thermolysin digests. A 110-kD fragment (f110), which contains the Arg-Gly-Asp-Ser sequence (RGDS)-dependent cell-binding domain but no heparin-binding domains and whose sequences are shared in common by both the alpha- and beta-subunits of pFN, facilitated attachment of cells that approached the level observed with either intact pFN or the heparan sulfate-binding platelet factor-4 (PF4). This attachment on f110 was resistant to RGDS-containing peptide in the medium. Neurite outgrowth was also maximal on f110, and half of these neurites were also resistant to soluble RGDS peptide. Treatment of cells with glycosaminoglycan lyases failed to alter these responses on f110. Therefore, there is a second "cell-binding" domain in the sequences represented by f110 that is not RGDS- or heparan sulfate-dependent and that facilitates stable attachment and some neurite outgrowth; this domain appears to be conformation-dependent. Comparisons were also made between two larger fragments generated from the two subunits of pFN-f145 from the alpha-subunit and f155 from the beta-subunit--both of which contain the RGDS-dependent cell-binding domain and the COOH-terminal heparin-binding domain but which differ in the former's containing some IIICS sequence at its COOH terminus and the latter's having an additional type III homology unit. Heparin-binding fragments (with no RGDS activity) of f29 and f38, derived from f145 or f155 of pFN, respectively, and having the same differences in sequence, were also compared with f44 + 47 having the "extra domain" characteristic of cFN. Attachment on f145 was slightly sensitive to soluble RGDS peptide; attachment on f155 was much more sensitive. There were also differences in the percentage of cells with neurites on f145 vs. f155 but neurites on either fragment were completely sensitive to RGDS peptide. Mixing of f29, f38, or PF4 with f110 could not reconstitute the activities demonstrated in f145 or f155, demonstrating that covalently linked sequences are critical in modulating these responses. However, mixing of f44 + 47 from cFN with f110 from pFN increased the sensitivity to RGDS peptide.(ABSTRACT TRUNCATED AT 400 WORDS)


1993 ◽  
Vol 122 (4) ◽  
pp. 933-940 ◽  
Author(s):  
S Higashiyama ◽  
JA Abraham ◽  
M Klagsbrun

Heparin-binding EGF-like growth factor (HB-EGF), but not EGF, binds to cell surface heparan sulfate proteoglycan (HSPG). This was demonstrated in (a) the binding of 125I-HB-EGF to mutant CHO cells deficient in HS production was diminished by 70% compared to wild-type CHO cells, (b) the binding of 125I-HB-EGF to CHO cells and bovine aortic smooth muscle cells (BASMC) was diminished 80% by heparitinase or chlorate treatment, and (c) 125I-EGF did not bind to CHO cells and its binding to BASMC was not diminished at all by heparitinase and only slightly by chlorate treatment. Accordingly, the role of HB-EGF interactions with HSPG in modulating bioactivity was examined. Heparitinase or chlorate treatment of BASMC diminished the ability of HB-EGF to stimulate BASMC migration by 60-80%. A similar inhibition of migration occurred when BASMC were treated with a synthetic peptide (P21) corresponding to the sequence of the putative heparin-binding domain of HB-EGF. As a control for BASMC viability, and for specificity, it was found that heparitinase and P21 did not inhibit at all and chlorate inhibited only slightly the stimulation of BASMC migration by PDGF AB. Since heparitinase, chlorate, and P21 treatment also diminished by 70-80% the cross-linking of 125I-HB-EGF to the EGF receptor, it was concluded that the interaction of HB-EGF, via its heparin-binding domain, with cell surface HSPG was essential for its optimal binding to the EGF receptor on BASMC and hence for its optimal ability to stimulate migration.


2020 ◽  
Vol 295 (9) ◽  
pp. 2804-2821 ◽  
Author(s):  
Daniel R. Sandoval ◽  
Alejandro Gomez Toledo ◽  
Chelsea D. Painter ◽  
Ember M. Tota ◽  
M. Osman Sheikh ◽  
...  

Animal cells express heparan sulfate proteoglycans that perform many important cellular functions by way of heparan sulfate–protein interactions. The identification of membrane heparan sulfate–binding proteins is challenging because of their low abundance and the need for extensive enrichment. Here, we report a proteomics workflow for the identification and characterization of membrane-anchored and extracellular proteins that bind heparan sulfate. The technique is based on limited proteolysis of live cells in the absence of denaturation and fixation, heparin-affinity chromatography, and high-resolution LC-MS/MS, and we designate it LPHAMS. Application of LPHAMS to U937 monocytic and primary murine and human endothelial cells identified 55 plasma membrane, extracellular matrix, and soluble secreted proteins, including many previously unidentified heparin-binding proteins. The method also facilitated the mapping of the heparin-binding domains, making it possible to predict the location of the heparin-binding site. To validate the discovery feature of LPHAMS, we characterized one of the newly-discovered heparin-binding proteins, C-type lectin 14a (CLEC14A), a member of the C-type lectin family that modulates angiogenesis. We found that the C-type lectin domain of CLEC14A binds one-to-one to heparin with nanomolar affinity, and using molecular modeling and mutagenesis, we mapped its heparin-binding site. CLEC14A physically interacted with other glycosaminoglycans, including endothelial heparan sulfate and chondroitin sulfate E, but not with neutral or sialylated oligosaccharides. The LPHAMS technique should be applicable to other cells and glycans and provides a way to expand the repertoire of glycan-binding proteins for further study.


1994 ◽  
Vol 107 (9) ◽  
pp. 2599-2608 ◽  
Author(s):  
E.A. Mesri ◽  
M. Ono ◽  
R.J. Kreitman ◽  
M. Klagsbrun ◽  
I. Pastan

Heparin-binding EGF-like growth factor (HB-EGF) is a smooth muscle cell mitogen composed of both EGF receptor and heparin-binding domains. To better understand the function of its domains, intact HB-EGF or its heparin-binding (HB) domain (amino acids 1–45) were fused to a mutant Pseudomonas exotoxin with an inactivated cell-binding domain. The resulting chimeric toxins, HB-EGF-PE* and HB-PE*, were tested on tumor cells, proliferating smooth muscle cells and a mutant Chinese hamster ovary cell line deficient in heparan sulfate proteoglycans (HSPGs). Two targets were found for HB-EGF-PE*. Cells were killed mainly through EGF receptors, but the HB domain was responsible for killing via HSPGs. HB-PE* did not bind to the EGF receptor and thus was cytotoxic by interacting exclusively with HSPGs. We conclude that the HB domain of HB-EGF is able to mediate internalization through HSPGs, without requiring the EGF receptor.


Sign in / Sign up

Export Citation Format

Share Document