Type 3 secretion system of Pseudomonas aeruginosa

2021 ◽  
Vol 246 ◽  
pp. 126719
Author(s):  
Gertrudis Horna ◽  
Joaquim Ruiz
2020 ◽  
Vol 9 (30) ◽  
Author(s):  
Adenike Adenikinju ◽  
Roderick V. Jensen ◽  
Thomas M. Kerkering ◽  
Dorothy C. Garner ◽  
Jayasimha Rao

ABSTRACT We report the complete genome of clinical strain Pseudomonas aeruginosa CMC-115, which was isolated from an acute ventilator-associated pneumonia patient. Illumina sequencing reads were assembled using Geneious to yield a 6,375,262-bp circular chromosome that exhibited an unusual ferrichrome receptor in the pyoverdine synthesis locus and the absence of type 3 secretion system genes.


2020 ◽  
Vol 203 (2) ◽  
pp. e00300-20
Author(s):  
Katie V. Farrant ◽  
Livia Spiga ◽  
Jane C. Davies ◽  
Huw D. Williams

ABSTRACTPseudomonas aeruginosa is a significant nosocomial pathogen and is associated with lung infections in cystic fibrosis (CF). Once established, P. aeruginosa infections persist and are rarely eradicated despite host immune cells producing antimicrobial oxidants, including hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). There is limited knowledge as to how P. aeruginosa senses, responds to, and protects itself against HOCl and HOSCN and the contribution of such responses to its success as a CF pathogen. To investigate the P. aeruginosa response to these oxidants, we screened 707 transposon mutants, with mutations in regulatory genes, for altered growth following HOCl exposure. We identified regulators of antibiotic resistance, methionine biosynthesis, catabolite repression, and PA14_07340, the homologue of the Escherichia coli HOCl-sensor RclR (30% identical), which are required for protection against HOCl. We have shown that RclR (PA14_07340) protects specifically against HOCl and HOSCN stress and responds to both oxidants by upregulating the expression of a putative peroxiredoxin, rclX (PA14_07355). Transcriptional analysis revealed that while there was specificity in the response to HOCl (231 genes upregulated) and HOSCN (105 genes upregulated), there was considerable overlap, with 74 genes upregulated by both oxidants. These included genes encoding the type 3 secretion system, sulfur and taurine transport, and the MexEF-OprN efflux pump. RclR coordinates part of the response to both oxidants, including upregulation of pyocyanin biosynthesis genes, and, in the presence of HOSCN, downregulation of chaperone genes. These data indicate that the P. aeruginosa response to HOCl and HOSCN is multifaceted, with RclR playing an essential role.IMPORTANCE The bacterial pathogen Pseudomonas aeruginosa causes devastating infections in immunocompromised hosts, including chronic lung infections in cystic fibrosis patients. To combat infection, the host’s immune system produces the antimicrobial oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN). Little is known about how P. aeruginosa responds to and survives attack from these oxidants. To address this, we carried out two approaches: a mutant screen and transcriptional study. We identified the P. aeruginosa transcriptional regulator, RclR, which responds specifically to HOCl and HOSCN stress and is essential for protection against both oxidants. We uncovered a link between the P. aeruginosa transcriptional response to these oxidants and physiological processes associated with pathogenicity, including antibiotic resistance and the type 3 secretion system.


mBio ◽  
2021 ◽  
Author(s):  
Christina K. Lin ◽  
Daniel S. W. Lee ◽  
Saria McKeithen-Mead ◽  
Thierry Emonet ◽  
Barbara Kazmierczak

The expression of specific virulence traits is strongly associated with Pseudomonas aeruginosa ’s success in establishing acute infections but is thought to carry a cost for bacteria. Producing multiprotein secretion systems or motility organelles is metabolically expensive and can target a cell for recognition by innate immune system receptors that recognize structural components of the type 3 secretion system (T3SS) or flagellum.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Arjun Balakrishnan ◽  
Rajendra Karki ◽  
Brent Berwin ◽  
Masahiro Yamamoto ◽  
Thirumala-Devi Kanneganti

2014 ◽  
Vol 111 (21) ◽  
pp. 7801-7806 ◽  
Author(s):  
K. Czechowska ◽  
S. McKeithen-Mead ◽  
K. Al Moussawi ◽  
B. I. Kazmierczak

2019 ◽  
Author(s):  
Elif Eren ◽  
Rémi Planès ◽  
Julien Buyck ◽  
Pierre-Jean Bordignon ◽  
André Colom ◽  
...  

AbstractInflammasome-induced pyroptosis comprises a key cell-autonomous immune process against intracellular bacteria, namely the generation of dying cell structures. These so-called pore-induced intracellular traps (PITs) entrap and weaken intracellular microbes. However, the immune importance of pyroptosis against extracellular pathogens remains unclear. Here, we report that Type-3 secretion system (T3SS)-expressing Pseudomonas aeruginosa (P. aeruginosa) escaped PIT immunity by inducing a NLRC4 inflammasome-dependent macrophage pyroptosis response in the extracellular environment. To the contrary, phagocytosis of Salmonella Typhimurium promoted NLRC4-dependent PIT formation and the subsequent bacterial caging. Remarkably, T3SS-deficient Pseudomonas were efficiently sequestered within PIT-dependent caging, which favored exposure to neutrophils. Conversely, both NLRC4 and caspase-11 deficient mice presented increased susceptibility to T3SS-deficient P. aeruginosa challenge, but not to T3SS-expressing P. aeruginosa. Overall, our results uncovered that P. aeruginosa uses its T3SS to overcome inflammasome-triggered pyroptosis, which is primarily effective against intracellular invaders.ImportanceAlthough innate immune components confer host protection against infections, the opportunistic bacterial pathogen Pseudomonas aeruginosa (P. aeruginosa) exploits the inflammatory reaction to thrive. Specifically the NLRC4 inflammasome, a crucial immune complex, triggers an Interleukin (IL)-1β and -18 deleterious host response to P. aeruginosa. Here, we provide evidence that, in addition to IL-1 cytokines, P. aeruginosa also exploits the NLRC4 inflammasome-induced pro-inflammatory cell death, namely pyroptosis, to avoid efficient uptake and killing by macrophages. Therefore, our study reveals that pyroptosis-driven immune effectiveness mainly depends on P. aeruginosa localization. This paves the way toward our comprehension of the mechanistic requirements for pyroptosis effectiveness upon microbial infections and may initiate targeted approaches in order to ameliorate the innate immune functions to infections.Graphical abstractMacrophages infected with T3SS-expressing P. aeruginosa die in a NLRC4-dependent manner, which allows bacterial escape from PIT-mediated cell-autonomous immunity and neutrophil efferocytosis. However, T3SS-deficient P. aeruginosa is detected by both NLRC4 and caspase-11 inflammasomes, which promotes bacterial trapping and subsequent efferocytosis of P. aeruginosa-containing-PITs by neutrophils.


Sign in / Sign up

Export Citation Format

Share Document