A green methodology for thioether formation reaction and synthesis of symmetrical disulfides over new heterogeneous Cu attached to bifunctionalized mesoporous MCM-41

Author(s):  
Somayeh Molaei ◽  
Mohammad Ghadermazi
2019 ◽  
Vol 9 (3) ◽  
pp. 811-821 ◽  
Author(s):  
Zhao-Meng Wang ◽  
Li-Juan Liu ◽  
Bo Xiang ◽  
Yue Wang ◽  
Ya-Jing Lyu ◽  
...  

The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.


2000 ◽  
Vol 10 (PR7) ◽  
pp. Pr7-99-Pr7-102 ◽  
Author(s):  
G. Dosseh ◽  
D. Morineau ◽  
C. Alba-Simionesco
Keyword(s):  

2000 ◽  
Vol 10 (PR7) ◽  
pp. Pr7-95-Pr7-98 ◽  
Author(s):  
D. Morineau ◽  
F. Casas ◽  
C. Alba-Simionesco ◽  
A. Grosman ◽  
M.-C. Bellissent-Funel ◽  
...  

2013 ◽  
Vol 33 (10) ◽  
pp. 1696-1705
Author(s):  
Zhen LIU ◽  
Gang FENG ◽  
Chunyan PAN ◽  
Wang LI ◽  
Ping CHEN ◽  
...  
Keyword(s):  

2020 ◽  
Vol 12 (3) ◽  
pp. 03014-1-03014-5
Author(s):  
Fedir Ivashchyshyn ◽  
◽  
Dariusz Calus ◽  
Anna Pidluzhna ◽  
Piotr Chabecki ◽  
...  
Keyword(s):  

1991 ◽  
Vol 23 (1-3) ◽  
pp. 399-404 ◽  
Author(s):  
Y. Tamaura ◽  
P. Q. Tu ◽  
S. Rojarayanont ◽  
H. Abe

Stabilization of the hazardous materials by the Fe3O4-coating method was studied. In the ferrite-formation reaction in the aqueous solution, the adsorption of the metal ions and the oxidation of the adsorbed Fe(II) ions are repeated on the surface of the ferrite particles. This reaction was adopted to the coating of the hazardous materials with the Fe3O4(or ferrite). By repeating the two steps of l)the addition of the Fe(II) aqueous solution into the suspension of the hazardous materials, and 2)the oxidation by passing air through the reaction suspension, with the Fe3O4 layer, we could coat the surfaces of the hazardous materials, such as the heavy metal sludge from the neutralization-precipitation process, the CaF2 precipitates in the treatment of the waste waters containing fluoride ion along with hazardous metal ions, and the soils containing Cd(II) ion. These Fe3O4-coated hazardous materials are very stable and no heavy metal ions are leached under the normal environmental conditions. The ferrite sludges formed in the “Ferrite Process” were highly stabilized by the present method, and by the heat-treatment.


2020 ◽  
Vol 24 (22) ◽  
pp. 2665-2693
Author(s):  
Dipayan Mondal ◽  
Pankaj Lal Kalar ◽  
Shivam Kori ◽  
Shovanlal Gayen ◽  
Kalpataru Das

Indole moiety is often found in different classes of pharmaceutically active molecules having various biological activities including anticancer, anti-viral, anti-psychotic, antihypertensive, anti-migraine, anti-arthritis and analgesic activities. Due to enormous applications of indole derivatives in pharmaceutical chemistry, a number of conventional synthetic methods as well as green methodology have been developed for their synthesis. Green methodology has many advantages including high yields, short reaction time, and inexpensive reagents, highly efficient and environmentally benign over conventional methods. Currently, the researchers in academia as well as in pharmaceutical industries have been developing various methods for the chemical synthesis of indole based compounds via green approaches to overcome the drawbacks of conventional methods. This review reflects the last ten years developments of the various greener methods for the synthesis of indole derivatives by using microwave, ionic liquids, water, ultrasound, nanocatalyst, green catalyst, multicomponent reaction and solvent-free reactions etc. (please see the scheme below). Furthermore, the applications of green chemistry towards developments of indole containing pharmaceuticals and their biological studies have been represented in this review.


Sign in / Sign up

Export Citation Format

Share Document