Evaluating β-1,3-glucan synthesis inhibition using emulsion formation as an indicator

2021 ◽  
Vol 190 ◽  
pp. 106327
Author(s):  
Shinsuke Nerome ◽  
Naoki Yokota ◽  
Yoshihiro Ojima ◽  
Masayuki Azuma
2006 ◽  
Vol 50 (9) ◽  
pp. 3160-3161 ◽  
Author(s):  
David A. Stevens ◽  
Masayuki Ichinomiya ◽  
Yukako Koshi ◽  
Hiroyuki Horiuchi

ABSTRACT Concentrations above the MIC of caspofungin allow growth of some Candida isolates. A strain demonstrating paradoxical growth was grown in the presence and absence of caspofungin, and the cell wall content was analyzed. β-1,3-Glucan declined 81% in the presence of caspofungin, as expected. β-1,6-Glucan declined 73%. Chitin increased 898%, demonstrating a mechanism for paradoxical growth—a rapid shift in the key polymer.


1993 ◽  
Vol 3 (10) ◽  
pp. 2039-2042 ◽  
Author(s):  
James M. Balkovec ◽  
Regina M. Black ◽  
George K. Abruzzo ◽  
Ken Bartizal ◽  
Sarah Dreikorn ◽  
...  

2019 ◽  
Vol 19 (10) ◽  
pp. 812-830 ◽  
Author(s):  
P. Marie Arockianathan ◽  
Monika Mishra ◽  
Rituraj Niranjan

The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.


Hypertension ◽  
1995 ◽  
Vol 26 (6) ◽  
pp. 1019-1023 ◽  
Author(s):  
Sofía P. Salas ◽  
Fernando Altermatt ◽  
Mauricio Campos ◽  
Andrea Giacaman ◽  
Pedro Rosso

2021 ◽  
Vol 9 (7) ◽  
pp. 1390
Author(s):  
Masafumi Noda ◽  
Naho Sugihara ◽  
Yoshimi Sugimoto ◽  
Ikue Hayashi ◽  
Sachiko Sugimoto ◽  
...  

Cariogenic bacteria, such as Streptococcus (S.) mutans and S. sobrinus, produce insoluble and sticky glucans as a biofilm material. The present study demonstrates that a lactic acid bacterium (LAB) named BM53-1 produces a substance that inhibits the sticky glucan synthesis. The BM53-1 strain was isolated from a flower of Actinidia polygama and identified as Lactobacillus reuteri. The substance that inhibits sticky glucan synthesis does not exhibit antibacterial activity against S. mutans. The cariogenic S. mutans produces glucans under the control of three glucosyltransferase (GTF) enzymes, named GtfB, GtfC, and GtfD. Although GtfB and GtfC produce insoluble glucans, GtfD forms soluble glucans. Through quantitative reverse-transcriptional (qRT)-PCR analysis, it was revealed that the BM53-1-derived glucan-production inhibitor (GI) enhances the transcriptions of gtfB and gtfC genes 2- to 7-fold at the early stage of cultivation. However, that of gtfD was not enhanced in the presence of the GI, indicating that the glucan stickiness produced by S. mutans was significantly weaker in the presence of the GI. Our result demonstrates that Lb. reuteri BM53-1 is useful to prevent dental caries.


Sign in / Sign up

Export Citation Format

Share Document