Solution filtration in cobalt removal process: Detection of varying process conditions

2005 ◽  
Vol 18 (13-14) ◽  
pp. 1253-1258 ◽  
Author(s):  
Jari Näsi ◽  
Kauko Leiviskä
Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 387
Author(s):  
Yiting Liang ◽  
Yuanhua Zhang ◽  
Yonggang Li

A mechanistic kinetic model of cobalt–hydrogen electrochemical competition for the cobalt removal process in zinc hydrometallurgical was proposed. In addition, to overcome the parameter estimation difficulties arising from the model nonlinearities and the lack of information on the possible value ranges of parameters to be estimated, a constrained guided parameter estimation scheme was derived based on model equations and experimental data. The proposed model and the parameter estimation scheme have two advantages: (i) The model reflected for the first time the mechanism of the electrochemical competition between cobalt and hydrogen ions in the process of cobalt removal in zinc hydrometallurgy; (ii) The proposed constrained parameter estimation scheme did not depend on the information of the possible value ranges of parameters to be estimated; (iii) the constraint conditions provided in that scheme directly linked the experimental phenomenon metrics to the model parameters thereby providing deeper insights into the model parameters for model users. Numerical experiments showed that the proposed constrained parameter estimation algorithm significantly improved the estimation efficiency. Meanwhile, the proposed cobalt–hydrogen electrochemical competition model allowed for accurate simulation of the impact of hydrogen ions on cobalt removal rate as well as simulation of the trend of hydrogen ion concentration, which would be helpful for the actual cobalt removal process in zinc hydrometallurgy.


2007 ◽  
Vol 359-360 ◽  
pp. 123-127
Author(s):  
Tian Ji ◽  
Dong Ming Guo ◽  
Gui Hong Bian

Some key parts used in such area as the national defence are made of high performance hard and brittle materials, and they should meet not only the requirement of geometry accuracy but also that of specified physical performance in manufacturing. The Radome is one of such key parts in the active homing guidance weapon, with a typical complicated surface. In order to meet the electric thickness requirement, a controlled removal grinding point-by-point is needed for the radome during its precision machining. A special 3-coordinates equipment with spherical diamond grinding wheel is adopted; the grinding paths are generated in the planes normal to the cutter axis with a Z-level profile machining method; the feed step is determined by step screening method; and the stepping between layers is carried out according to the remaining scallop crest height. Process conditions including the grinding depth and the workpiece speed are determined through experiments, and the process errors under different processing conditions are analyzed to put forward an optimized processing tactics. As a result, a basis for precision removal process of any other part of high performance hard and brittle materials with complex surface is established, and a technology support for precision machining of key parts in the national major projects is provided.


2014 ◽  
Vol 24 (5) ◽  
pp. 586-599 ◽  
Author(s):  
B. Sun ◽  
W.H. Gui ◽  
Y.L. Wang ◽  
C.H. Yang

2012 ◽  
Vol 472-475 ◽  
pp. 2448-2451
Author(s):  
Zi Long Peng ◽  
Yi Nan Li

Based on the analysis of electrical discharge process characteristics, the principle of achieving deposition process and removal process using micro EDM is proposed. By controlling the tool electrode wear in one micro EDM system, it is easy to achieve the different machining type of deposition or removal process. Centering on the problem of tool electrode wear, the process conditions of the deposition and removal including machining polarity, machining dielectric medium, discharge parameters and the tool electrode rotation are researched detailedly. Results show that under the discharge phenomena between electrodes, metal material can be deposited to form micro structures, and the transfer strategy from deposition to removal process can be controlled easily. The machining procedure for fabrication of micro structures based on depostion and removal process are put forward. And finally, some examles with well shape and dimension accuracy are given to validate the processing ability for micro machining.


Sign in / Sign up

Export Citation Format

Share Document