Aniline Removal Process Conditions in Wastewater by Electrochemical Oxidation

2019 ◽  
Vol 08 (03) ◽  
pp. 260-266
Author(s):  
维啸 仲
2010 ◽  
Vol 61 (5) ◽  
pp. 1257-1266 ◽  
Author(s):  
Soraya Mohajeri ◽  
Hamidi Abdul Aziz ◽  
Mohamed Hasnain Isa ◽  
Mohammad Ali Zahed ◽  
Mohammed J. K. Bashir ◽  
...  

In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R2) values of >0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm2, electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm2, electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.


2007 ◽  
Vol 359-360 ◽  
pp. 123-127
Author(s):  
Tian Ji ◽  
Dong Ming Guo ◽  
Gui Hong Bian

Some key parts used in such area as the national defence are made of high performance hard and brittle materials, and they should meet not only the requirement of geometry accuracy but also that of specified physical performance in manufacturing. The Radome is one of such key parts in the active homing guidance weapon, with a typical complicated surface. In order to meet the electric thickness requirement, a controlled removal grinding point-by-point is needed for the radome during its precision machining. A special 3-coordinates equipment with spherical diamond grinding wheel is adopted; the grinding paths are generated in the planes normal to the cutter axis with a Z-level profile machining method; the feed step is determined by step screening method; and the stepping between layers is carried out according to the remaining scallop crest height. Process conditions including the grinding depth and the workpiece speed are determined through experiments, and the process errors under different processing conditions are analyzed to put forward an optimized processing tactics. As a result, a basis for precision removal process of any other part of high performance hard and brittle materials with complex surface is established, and a technology support for precision machining of key parts in the national major projects is provided.


2012 ◽  
Vol 472-475 ◽  
pp. 2448-2451
Author(s):  
Zi Long Peng ◽  
Yi Nan Li

Based on the analysis of electrical discharge process characteristics, the principle of achieving deposition process and removal process using micro EDM is proposed. By controlling the tool electrode wear in one micro EDM system, it is easy to achieve the different machining type of deposition or removal process. Centering on the problem of tool electrode wear, the process conditions of the deposition and removal including machining polarity, machining dielectric medium, discharge parameters and the tool electrode rotation are researched detailedly. Results show that under the discharge phenomena between electrodes, metal material can be deposited to form micro structures, and the transfer strategy from deposition to removal process can be controlled easily. The machining procedure for fabrication of micro structures based on depostion and removal process are put forward. And finally, some examles with well shape and dimension accuracy are given to validate the processing ability for micro machining.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (7) ◽  
pp. 467-477
Author(s):  
PASI NIEMELAINEN ◽  
MARTTI PULLIAINEN ◽  
JARMO KAHALA ◽  
SAMPO LUUKKAINEN

Black liquor high solids (about 80%) concentrators have often been found to suffer from aggressive corrosion. In particular, the first and second effect bodies are susceptible to corrosion attacks resulting in tube leaks and wall thinning, which limit the availability and lifetime of evaporator lines. Corrosion dynamics and construction materials have been studied extensively within the pulp and paper industry to understand the corrosion process. However, it has been challenging to identify root causes for corrosion, which has limited proactive measures to minimize corrosion damage. Corrosion of the first phase concentrator was studied by defining the potential regions for passive area, stress corrosion cracking, pitting corrosion, and general corrosion. This was achieved by using a technique called polarization scan that reveals ranges for the passive area in which the equipment is naturally protected against corrosion. The open circuit potential, also known as corrosion potential, and linear polarization resistance of the metal were monitored online, which allowed for definition of corrosion risks for stainless steel 304L and duplex stainless steels 2205 and SAF 2906. An online temperature measurement added insight to the analysis. A process diagnostics tool was used to identify root causes of the corrosion attacks. Many of the root causes were related to process conditions triggering corrosion. Once the metal surface was activated, it was difficult to repassivate the metal naturally unless a sufficient potential range was reached.


Sign in / Sign up

Export Citation Format

Share Document