Investigating the use of vertical vibration to recover metal from electrical and electronic waste

2007 ◽  
Vol 20 (9) ◽  
pp. 926-932 ◽  
Author(s):  
Nusruth Mohabuth ◽  
Philip Hall ◽  
Nicholas Miles
Recycling ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 33
Author(s):  
Laura Strobl ◽  
Thomas Diefenhardt ◽  
Martin Schlummer ◽  
Tanja Leege ◽  
Swetlana Wagner

This paper describes a study for waste of electrical and electronic equipment (WEEE) to characterise the plastic composition of different mixed plastic fractions. Most of the samples studied are currently excluded from material recycling and arise as side streams in state-of-the-art plastics recycling plants. These samples contain brominated flame retardants (BFR) or other substances of concern listed as persistent organic pollutants or in the RoHS directive. Seventeen samples, including cathode ray tube (CRT) monitors, CRT televisions, flat screens such as liquid crystal displays, small domestic appliances, and information and communication technology, were investigated using density- and dissolution-based separation processes. The total bromine and chlorine contents of the samples were determined by X-ray fluorescence spectroscopy, indicating a substantial concentration of both elements in density fractions above 1.1 g/cm3, most significantly in specific solubility classes referring to ABS and PS. This was further supported by specific flame retardant analysis. It was shown that BFR levels of both polymers can be reduced to levels below 1000 ppm by dissolution and precipitation processes enabling material recycling in compliance with current legislation. As additional target polymers PC and PC-ABS were also recycled by dissolution but did not require an elimination of BFR. Finally, physicochemical investigations of recycled materials as gel permeation chromatography, melt flow rate, and differential scanning calorimetry suggest a high purity and indicate no degradation of the technical properties of the recycled polymers.


2017 ◽  
Vol 71 (3) ◽  
pp. 271-279
Author(s):  
Aleksandra Vucinic ◽  
Zeljko Kamberovic ◽  
Milisav Ranitovic ◽  
Tihomir Kovacevic ◽  
Irena Najcevic

This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste) in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential. Granulometric analysis as well analysis of chemical composition of obtained fractions was performed. Subsequently, the manual classification of different types of polymeric material contained in the granulate was made, and both the apparent specific gravity and the chemical composition of the classified types of polymeric materials were determined. Chemical composition of granulate was determined by X-Ray Fluorescence (XRF) using Thermo Scientific Niton XL 3t, while the identification of residual polymers was determined by the FTIR (Fourier Transform Infrared Spectroscopy) method on the Bomen MB 100 device in range 4000 to 400 cm?1. Based on the results of this study, it can be concluded that after the hydrometallurgical treatment of printed circuit boards, and the separation of metals that have the highest value, the residual non-metallic fraction have the utility value and can be used for various purposes, such as developing new polymer materials for technical purposes that have been investigated by many researchers and mentioned in this article.


Author(s):  
Dr. Shakuntala Pandey

“WEEE” or Waste electrical and electronic equipments” A computer complete with monitor, keyboard, mouse and the central processing unit weight about 32 kg. But with no scientific system of recycling in place they are dumped as E-waste. Pile after pile of chips and assorted bits and pieces of computers are contributed by IT companies. As the IT segment tries to keep pace the recycling market gets flooded with fresh stocks of electronics materials - stripped, pounded and extracted. The BPO/IT segment is one of the largest generators of e-waste. As the problem of e-waste continues to grow bigger, the need to evolve clean means of disposal has become more urgent. Some private companies are working on scientific recycling of waste. The bulk of e-waste still travels to the scrap yards and the backroom recycler.


Sign in / Sign up

Export Citation Format

Share Document