Radionuclide distributions in Olympic Dam copper concentrates: The significance of minor hosts, incorporation mechanisms, and the role of mineral surfaces

2020 ◽  
Vol 148 ◽  
pp. 106176 ◽  
Author(s):  
Mark Rollog ◽  
Nigel J. Cook ◽  
Paul Guagliardo ◽  
Kathy Ehrig ◽  
Matt Kilburn
Keyword(s):  
2020 ◽  
Author(s):  
Prasanth Babu Ganta ◽  
Oliver Kühn ◽  
Ashour Ahmed

<div><div><div><p>The fate of phosphorus (P) in the eco-system is strongly affected by the interaction of phos- phates with soil components and especially reactive soil mineral surfaces. As a consequence, P immobilization could occur which eventually leads to P inefficiency and thus unavailability to plants with strong implications on the global food system. A molecular level understanding of the mechanisms of the P binding to soil mineral surfaces could be a key for the development of novel strategies for more efficient P application. Much experimental work has been done to understand P binding to several reactive and abundant minerals especially goethite (α-FeOOH). On the other hand, atomistic modeling of the P-mineral molecular systems using molecular dynamics (MD) simulations is emerging as a new tool which provides more detailed information regarding the mechanisms, nature, and strength of these binding processes. The present study characterize the binding of the most abundant organic phosphates in forest soils, inositol hexaphosphate (IHP) and glycerolphosphate (GP), to the 100 diaspore (α-AlOOH) surface plane. Here, different molecular models have been introduced to simulate typical situations for the P-binding at the diaspore/water interface. For all models, quantum mechanics/molecular mechanics (QM/MM) based MD simulations have been performed to explore the diaspore–IHP/GP–water interactions. The results provide evidence for the formation of monodentate (M) and bidentate (B) motifs for GP and M and as well as two monodentate (2M) motifs for IHP with the surface. The calculated interaction energies suggest that GP and IHP prefer to form the B and 2M motif, respectively. Moreover, IHP exhibited stronger binding than GP with diaspore and water. Further, the role of water in controlling binding strengths via promoting of specific binding motifs, formation of H-bonds, adsorption and dissociation at the surface, as well as proton transfer processes is demonstrated. Finally, the P-binding at the 100 diaspore surface plane is weaker than that at the 010 plane highlighting the influential role of the coordination number of Al atoms at the top surface of diaspore.</p></div></div></div>


2020 ◽  
Vol 10 (2) ◽  
pp. 5-16
Author(s):  
Iván Darío Piñerez Torrijos ◽  
Aleksandr Mamonov ◽  
Skule Strand ◽  
Tina Puntervold

An appropriated wettability characterization is crucial for the successful implementation of waterflooding operations. Understanding how crude oil adsorption takes place on different mineral surfaces and how these processes impact reservoir wettability are essential aspects that can help unlock and produce large underground oil reserves. Polar organic components (POC) present in crude oil are surface-active molecules with high affinity towards mineral surfaces. POCs are quantified by the acid and base numbers (AN and BN) with units of mgKOH/g. The POC adsorption behavior is highly influenced by the type of minerals and brines present in the reservoir system. This study aims to shed light onto the most important features of oil adsorption on carbonates and sandstones mineral surfaces; particular attention is given to the role of acidic components. Therefore, outcrop sandstone and carbonate materials were used. The sandstone material contains various silicates, including quartz, Illite clay, and feldspars. The carbonate outcrop material came from the Stevns Klint quarry in Denmark and is considered a very pure calcium carbonate with minimum silicate impurities. Dynamic adsorption tests were performed at 50°C by injecting low asphaltene crude oils into core plugs, and AN and BN values of the effluent oil samples were measured and compared with the influent oil values. Furthermore, spontaneous imbibition (SI) tests were performed to assess the wettability impact of crude oil injection in oil flooded cores. The results showed that after crude oil injection, the cores became mix-wet. Confirmation of a reduction in capillary forces and a shift towards a less water-wet state was reported for both mineralogies, i.e., sandstones and carbonates. The acidic polar components had a substantial impact on carbonates wettability, while on sandstones, the experiments suggested that acidic polar components had a lower impact on wettability than that observed in the basic polar components.


2007 ◽  
Author(s):  
S. C. Parker ◽  
J. P. Allen ◽  
C. Arrouvel ◽  
D. Spagnoli ◽  
S. Kerisit ◽  
...  

2020 ◽  
Vol 10 (4) ◽  
pp. 5765-5771

Soil organic matter (SOM) plays a leading role in the formation of the soil structure. However, the mechanisms of that formation are still debatable. We proposed that the combined action of two types of SOM - labile polyelectrolytes released by soil biota (flocculant) and highly transformed polyelectrolytes - humic substances (modifiers of soil mineral particles) has a synergetic effect and may be a key process that leads to the aggregation of mineral particles in soils. Humic substances adsorbing on mineral surfaces play a role of anchors that link clay particles with a flocculant and facilitate the aggregation. Different mechanisms of SOM interaction with minerals are considered. Our hypothesis was confirmed by rheological studies of model clay and sand systems with/without addition of humic acids and chitosan (flocculant). Comparison of model systems with real soils indicated the role of OM as well as other factors (clay content, humidity) in the soil aggregates formation.


2018 ◽  
Vol 15 (3) ◽  
pp. 821-832 ◽  
Author(s):  
Yaniv Olshansky ◽  
Robert A. Root ◽  
Jon Chorover

Abstract. Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet–dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet–dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet–dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil environment, where wet–dry cycles occur at different frequencies from site to site and along the soil profile, different interactions between DOM and soil surfaces are expected and need to be considered for the overall assessment of carbon dynamics.


Sign in / Sign up

Export Citation Format

Share Document