Mitochondrial calcium signaling in the brain and its modulation by neurotropic viruses

Mitochondrion ◽  
2021 ◽  
Author(s):  
Rituparna Chaudhuri ◽  
Himali Arora ◽  
Pankaj Seth
2021 ◽  
Vol 15 ◽  
Author(s):  
Romeo Rebusi ◽  
Joshua Phillipe Olorocisimo ◽  
Jeric Briones ◽  
Yasumi Ohta ◽  
Makito Haruta ◽  
...  

Fluorescence imaging devices have been indispensable in elucidating the workings of the brain in living animals, including unrestrained, active ones. Various devices are available, each with their own strengths and weaknesses in terms of many factors. We have developed CMOS-based needle-type imaging devices that are small and lightweight enough to be doubly implanted in freely moving mice. The design also allowed angled implantations to avoid critical areas. We demonstrated the utility of the devices by using them on GCaMP6 mice in a formalin test experiment. Simultaneous implantations to the capsular-lateral central amygdala (CeLC) and dorsal raphe nucleus (DRN) were proven to be safe and did not hinder the execution of the study. Analysis of the collected calcium signaling data, supported by behavior data, showed increased activity in both regions as a result of pain stimulation. Thus, we have successfully demonstrated the various advantages of the device in its application in the pain experiment.


2012 ◽  
Vol 288 (5) ◽  
pp. 3070-3084 ◽  
Author(s):  
Jiu-Qiang Wang ◽  
Qian Chen ◽  
Xianhua Wang ◽  
Qiao-Chu Wang ◽  
Yun Wang ◽  
...  

2007 ◽  
Vol 28 (4) ◽  
pp. 772-785 ◽  
Author(s):  
Sridhar S Kannurpatti ◽  
Bharat B Biswal

Effects of mitochondrial calcium signaling blockade on neural activation-induced CBF response were studied in urethane-anesthetized rats. Ruthenium red (RuR), a nonspecific inhibitor of the mitochondrial calcium uniporter (MCU), and Ru360, a highly specific inhibitor of the MCU, were delivered intravenously (i.v.) or intracerebroventricularly (i.c.v.). Baseline cerebral blood flow (CBF) and cerebral hyperemic response to whisker stimulation were measured through a thinned skull over the somatosensory cortex using laser Doppler imaging (LDI). Ruthenium red or Ru360 did not alter the baseline CBF at all doses used. However, the hyperemic response, defined as the activation area and amplitude of CBF increase in response to mechanical whisker stimulation, was significantly reduced in the presence of either RuR or Ru360 delivered i.c.v. The hyperemic response reduced significantly with a dose of 14.5 nmol RuR (i.c.v.), showing a further decrease with 29 nmol RuR (i.c.v.). A comparable decrease in the hyperemic response was observed during treatment with a relatively lower dose of 4.5 and 9 nmol Ru360 (i.c.v.). Delivered intravenously, Ru360 significantly diminished the cerebral hyperemic response at doses greater than 80 μg/kg i.v., up to a dose of 320 μg/kg i.v. However, RuR (i.v.) had an opposite effect with an enhancement in the cerebral hyperemic response at all doses studied. Ruthenium red or Ru360 had no significant effect on the cerebral reactivity to hypercapnia, indicating that altered cerebral hyperemic response to whisker stimulation was predominantly neural. We conclude that mitochondrial calcium signaling through the MCU mediates neural activation-induced CBF response in vivo.


2005 ◽  
Vol 1047 (1) ◽  
pp. 127-137 ◽  
Author(s):  
MY-HANH T. NGUYEN ◽  
M. SALEET JAFRI

2014 ◽  
Vol 29 ◽  
pp. 133-141 ◽  
Author(s):  
György Hajnóczky ◽  
David Booth ◽  
György Csordás ◽  
Valentina Debattisti ◽  
Tünde Golenár ◽  
...  

2020 ◽  
Author(s):  
Roman Serrat ◽  
Ana Covelo ◽  
Vladimir Kouskoff ◽  
Sebastien Delcasso ◽  
Andrea Ruiz ◽  
...  

SummaryIntracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is currently unexplored. We found that the activation of astrocyte mitochondrial-associated CB1 receptors (mtCB1) determines MERCs-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through specific mechanisms regulating the activity of the mitochondrial calcium uniporter (MCU) channel. Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the precise dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that genetic exclusion of mtCB1 receptors or specific astroglial MCU inhibition blocks lateral synaptic potentiation, a key example of astrocyte-dependent integration of distant synapses activity. Altogether, these data reveal an unforeseen link between astroglial MERCs and the regulation of brain network functions.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Thirupura S Shankar ◽  
Dinesh Kumar Anandamurugan Ramadurai ◽  
Kira Steinhorst ◽  
Salah Sommakia ◽  
Rachit Badolia ◽  
...  

Voltage dependent anion channel 2 (VDAC2) is a mitochondrial outer membrane porin known to play a significant role in apoptosis and calcium signaling. Abnormalities in cellular calcium homeostasis often leads to electrical and contractile dysfunction and can cause dilated cardiomyopathy and heart failure. Previous literature suggests that improving mitochondrial calcium uptake via VDAC2 rescues arrhythmia phenotypes in genetic models of impaired cellular calcium signaling. However, the direct role of VDAC2 in intracellular calcium signaling and cardiac function is not well understood. To elucidate the role of VDAC2 in calcium homeostasis, we generated a cardiac-specific deletion of Vdac2 in mice. Our results indicate that loss of VDAC2 in the myocardium during development causes severe impairment in excitation-contraction coupling by reducing mitochondrial calcium uptake (n=3, p<0.05) and thereby impairing intracellular calcium signaling. VDAC2 knock-out mice showed a significant reduction in RYR-mediated calcium release (F/F 0 ) and rate of calcium uptake by SERCA2a [tau(msec)] compared to control mice (N=3, WT=54, KO=38, p<0.0001 (F/F 0 ) and p<0.05 (tau)). We also observed adverse cardiac remodeling which progressed to severe dilated cardiomyopathy and death (N=6, p<0.0001). Reintroducing VDAC2 in 6-week-old knock-out mice partially rescued the cardiomyopathy phenotype evident from improvement in ejection fraction and fractional shortening (n=3, p<0.05). Improving mitochondrial calcium uptake via VDAC2 using a VDAC2 agonist efsevin, increased cardiac contractile force in a mouse model of pressure-overload induced heart failure (N=8, n=22, p<0.05). In conclusion, our findings demonstrate that VDAC2 plays a crucial role in cardiac function by influencing mitochondrial and cellular calcium signaling. Through this role in cellular calcium dynamics and excitation-contraction coupling VDAC2 emerges as a plausible therapeutic target for heart failure.


2015 ◽  
Vol 108 (2) ◽  
pp. 189a
Author(s):  
Jennifer Wettmarshausen ◽  
Yiming Cheng ◽  
Fabiana Perocchi

Sign in / Sign up

Export Citation Format

Share Document