scholarly journals A machine learning framework for guided wave-based damage detection of rail head using surface-bonded piezo-electric wafer transducers

2021 ◽  
pp. 100216
Author(s):  
Harsh Mahajan ◽  
Sauvik Banerjee
Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 406
Author(s):  
Christopher Schnur ◽  
Payman Goodarzi ◽  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Jens Prager ◽  
...  

Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated.


Author(s):  
Shi Yan ◽  
Binbin He ◽  
Naizhi Zhao

Pipeline structure may generate damages during its service life due to the influence of environment or accidental loading. The damages need to be detected and repaired if they are severe enough to influence the transportation work. Non-destructive detection using smart materials combined with suitable diagonal algorithms are widely used in the field of structural health monitoring (SHM). Piezoelectric ceramics (such as Lead Zirconate Titanate, PZT) is one of the smart materials to be applied in the SHM due to the piezoelectric effect. So far, the PZT-based wave method is widely used for damage detection of structures, in particular, pipeline structures. A series of piezoelectric patches are bonded on the surface of the pipeline structure to monitor the damages such as local crack or effective area reduction due to corrosion by using diagonal waves. The damage of the pipeline structure can be detected by analysis of the received diagonal waves which peak value, phase, and arriving time can be deferent from the health ones. The response of the diagonal wave is not only correlated to the damage location through estimation of the arrival time of the wave peak, but also associated with the peak value of the wave for the reduction of wave energy as the guided wave passing through the damages. Therefore, the presence of damages in the pipeline structure can be detected by investigating the parameter change of the guided waves. The change of the wave parameters represents the attenuation, deflection and mode conversion of the waves due to the damages. In addition, the guided wave has the ability of quick detecting the damage of the pipeline structure and the simplicity of generating and receiving detection waves by using PZT patches. To verify the proposed method, an experiment is designed and tested by using a steel pipe bonded the PZT patches on the surface of it. The PZT patches consist of an array to estimate the location and level of the damage which is simulated by an artificial notch on the surface of the structure. The several locations and deep heights of the notches are considered during the test. A pair of the PZT patches are used at the same time as one is used as an actuator and the other as a sensor, respectively. A tone burst of 5 cycles of wave shape is used during the experiment. A wave generator is applied to create the proposed waves, and the waves are amplified by an amplifier to actuate the PZT patch to emit the diagonal waves with appropriately enough energy. Meanwhile, the other PZT patch is used as a sensor to receive the diagonal signals which contain the information of the damages for processing. For data processing, an index of root mean square deviation (RMSD) of the received data is used to estimate the damage level by compare of the data between the damaged and the health peak valves of the received signals. The time reversal method which aimed at increasing the efficiency of the detection is also used to detect the damage location by estimating the arrival time of the reflected wave passing with a certain velocity. The proposed method experimentally validates that it is effective for application in damage detection of pipeline structure.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Justin Y. Lee ◽  
Britney Nguyen ◽  
Carlos Orosco ◽  
Mark P. Styczynski

Abstract Background The topology of metabolic networks is both well-studied and remarkably well-conserved across many species. The regulation of these networks, however, is much more poorly characterized, though it is known to be divergent across organisms—two characteristics that make it difficult to model metabolic networks accurately. While many computational methods have been built to unravel transcriptional regulation, there have been few approaches developed for systems-scale analysis and study of metabolic regulation. Here, we present a stepwise machine learning framework that applies established algorithms to identify regulatory interactions in metabolic systems based on metabolic data: stepwise classification of unknown regulation, or SCOUR. Results We evaluated our framework on both noiseless and noisy data, using several models of varying sizes and topologies to show that our approach is generalizable. We found that, when testing on data under the most realistic conditions (low sampling frequency and high noise), SCOUR could identify reaction fluxes controlled only by the concentration of a single metabolite (its primary substrate) with high accuracy. The positive predictive value (PPV) for identifying reactions controlled by the concentration of two metabolites ranged from 32 to 88% for noiseless data, 9.2 to 49% for either low sampling frequency/low noise or high sampling frequency/high noise data, and 6.6–27% for low sampling frequency/high noise data, with results typically sufficiently high for lab validation to be a practical endeavor. While the PPVs for reactions controlled by three metabolites were lower, they were still in most cases significantly better than random classification. Conclusions SCOUR uses a novel approach to synthetically generate the training data needed to identify regulators of reaction fluxes in a given metabolic system, enabling metabolomics and fluxomics data to be leveraged for regulatory structure inference. By identifying and triaging the most likely candidate regulatory interactions, SCOUR can drastically reduce the amount of time needed to identify and experimentally validate metabolic regulatory interactions. As high-throughput experimental methods for testing these interactions are further developed, SCOUR will provide critical impact in the development of predictive metabolic models in new organisms and pathways.


2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

Injuries and hidden dangers in training have a greater impact on athletes ’careers. In particular, the brain function that controls the motor function area has a greater impact on the athlete ’s competitive ability. Based on this, it is necessary to adopt scientific methods to recognize brain functions. In this paper, we study the structure of motor brain-computer and improve it based on traditional methods. Moreover, supported by machine learning and SVM technology, this study uses a DSP filter to convert the preprocessed EEG signal X into a time series, and adjusts the distance between the time series to classify the data. In order to solve the inconsistency of DSP algorithms, a multi-layer joint learning framework based on logistic regression model is proposed, and a brain-machine interface system of sports based on machine learning and SVM is constructed. In addition, this study designed a control experiment to improve the performance of the method proposed by this study. The research results show that the method in this paper has a certain practical effect and can be applied to sports.


2021 ◽  
Author(s):  
Meredith L. Wallace ◽  
Timothy S. Coleman ◽  
Lucas K. Mentch ◽  
Daniel J. Buysse ◽  
Jessica L. Graves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document