scholarly journals Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running

2014 ◽  
Vol 134 ◽  
pp. 16-30 ◽  
Author(s):  
Robert J. Talmadge ◽  
Wendy Acosta ◽  
Theodore Garland
2007 ◽  
Vol 293 (6) ◽  
pp. H3254-H3264 ◽  
Author(s):  
David S. Hydock ◽  
Chia-Ying Lien ◽  
Carole M. Schneider ◽  
Reid Hayward

Reducing testosterone and estrogen levels with a luteinizing hormone-releasing hormone agonist such as Zoladex (i.e., chemical gonadectomy) is a common treatment for many prostate and breast cancer patients, respectively. There are reports of surgical gonadectomy inducing cardiac dysfunction, and exercise has been shown to be cardioprotective under these circumstances. Minimal research has been done investigating the effects of chemical gonadectomy and increased physical activity on cardiac function. The purpose of this investigation was to examine the effects of chemical gonadectomy and physical activity on cardiac function. Male (M) and female (F) Sprague-Dawley rats received either Zoladex treatment (Zol) that suppressed gonadal function for 8 wk or control implants (Con) and either were allowed unlimited access to voluntary running wheels (WR) or remained sedentary (Sed) throughout the treatment period. In vivo and ex vivo left ventricle (LV) function were then assessed, and myosin heavy chain (MHC) expression was analyzed to help explain LV functional differences. Hearts from M Sed+Zol exhibited significantly lower aortic blood flow velocity, developed pressure, and maximal rate of pressure development and higher β-MHC expression than M Sed+Con. Hearts from F Sed+Zol exhibited significantly lower LV wall thicknesses, fractional shortening, and developed pressure and higher β-MHC expression than F Sed+Con. This cardiac dysfunction was not evident in hearts from M or F WR+Zol, and this was associated with a preservation of the MHC isoform distribution. Thus an 8-wk chemical gonadectomy with Zoladex promoted cardiac dysfunction in male and female rats, and voluntary wheel running protected against this cardiac dysfunction.


2002 ◽  
Vol 92 (1) ◽  
pp. 313-322 ◽  
Author(s):  
B. C. Harrison ◽  
M. L. Bell ◽  
D. L. Allen ◽  
W. C. Byrnes ◽  
L. A. Leinwand

10.1152/ japplphysiol.00832.2001.—To examine the effects of gene inactivation on the plasticity of skeletal muscle, mice null for a specific myosin heavy chain (MHC) isoform were subjected to a voluntary wheel-running paradigm. Despite reduced running performance compared with nontransgenic C57BL/6 mice (NTG), both MHC IIb and MHC IId/x null animals exhibited increased muscle fiber size and muscle oxidative capacity with wheel running. In the MHC IIb null animals, there was no significant change in the percentage of muscle fibers expressing a particular MHC isoform with voluntary wheel running at any time point. In MHC IId/x null mice, wheel running produced a significant increase in the percentage of fibers expressing MHC IIa and MHC I and a significant decrease in the percentage of fibers expressing MHC IIb. Muscle pathology was not affected by wheel running for either MHC null strain. In summary, despite their phenotypes, MHC null mice do engage in voluntary wheel running. Although this wheel-running activity is lessened compared with NTG, there is evidence of distinct patterns of muscle adaptation in both null strains.


2004 ◽  
Vol 96 (4) ◽  
pp. e103-e110 ◽  
Author(s):  
Youri E.C. Taes ◽  
Marijn Speeckaert ◽  
Evelien Bauwens ◽  
Marc R. De Buyzere ◽  
Johan Libbrecht ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document