Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus

2016 ◽  
Vol 133 ◽  
pp. 55-64 ◽  
Author(s):  
Mohamad Yusoff Firdaus ◽  
Jesper Brask ◽  
Per Munk Nielsen ◽  
Zheng Guo ◽  
Sergey Fedosov
2019 ◽  
Vol 42 ◽  
pp. e46582 ◽  
Author(s):  
José Carlos Quilles Junior ◽  
Ana Lucia Ferrarezi ◽  
Janaina Pires Borges ◽  
Jessika Souza Rossi ◽  
Daniela Alonso Bocchini ◽  
...  

Hydrophobic carriers can be used to improve the activity, stability and other properties of enzymes. Physical agents, like ultrasound, may also contribute to improving the dispersion and collision of the reagent molecules, decreasing the reaction time and intensifying the catalytic process. However, its effect on the enzyme activity and reaction selectivity is still not entirely understood. Here, enzyme modulation of immobilized lipases was studied under pulsed ultrasound irradiation in fatty acid ethyl ester (FAEE) synthesis for biodiesel production. Novozym 435® and two commercial lipases from Thermomyces lanuginosus and Rhizomucor miehei, immobilized on Octadecyl-Sepabeads were used as a biocatalyst in the transesterification reaction of vegetable oils and ethanol. The use of ultrasound associated with catalysis by the Novozym 435 increased the production of FAEE by about three times (from 8.9 to 26.4%) using soybean oil and changes were observed in the profile of the products. From the sonicated reaction, ethyl-palmitate production decreased from 23.4 to 11.7%, while the ethyl-linoleate content rose from 47.5 to 59.2%. On the other hand, the T. lanuginosus lipase was less affected by sonication with the overall production of FAEE increasing from 17.2 to 24.1%, with ethyl-palmitate and ethyl-linoleate content changing from 16.2 to 17.5% and 55.0 to 47.8%, respectively. Although the changes in the production yield are not too high, the main idea here was to show that ultrasound modulates the lipase activity as well as its respective selectivity. Thus, ultrasound, is responsible for changing the ethyl ester production, which can be applied to many other biochemical processes to improve or modulate their synthesis yield.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Elisa d'Avila Cavalcanti-Oliveira ◽  
Priscila Rufino da Silva ◽  
Alessandra Peçanha Ramos ◽  
Donato Alexandre Gomes Aranda ◽  
Denise Maria Guimarães Freire

The process of biodiesel production by the hydroesterification route that is proposed here involves a first step consisting of triacylglyceride hydrolysis catalyzed by lipase from Thermomyces lanuginosus (TL 100L) to generate free fatty acids (FFAs). This step is followed by esterification of the FFAs with alcohol, catalyzed by niobic acid in pellets or without a catalyst. The best result for the enzyme-catalyzed hydrolysis was obtained under reaction conditions of 50% (v/v) soybean oil and 2.3% (v/v) lipase (25 U/mL of reaction medium) in distilled water and at 60∘C; an 89% conversion rate to FFAs was obtained after 48 hours of reaction. For the esterification reaction, the best result was with an FFA/methanol molar ratio of 1:3, niobic acid catalyst at a concentration of 20% (w/w FFA), and 200∘C, which yielded 92% conversion of FFAs to soy methyl esters after 1 hour of reaction. This study is exceptional because both the hydrolysis and the esterification use a simple reaction medium with high substrate concentrations.


2019 ◽  
Vol 9 (2) ◽  
pp. 99-108
Author(s):  
John Henry Castro Posada ◽  
Angela Adriana Ruíz Colorado

A kinetic model was developed to describe FAME production from refined, bleached and deodorized palm oil (RBDPO) in a solvent-free system, using Thermomyces lanuginosus lipase, in free and immobilized form. The limitations of substrate mass transfer, enzymatic inhibition and discontinuous feeding of alcohol were considered. The kinetic model for the enzyme in free and immobilized form was validated experimentally, under the same process conditions (34°C, 0.145mg protein/g oil, 4.1:1 Methanol: Oil molar ratio). The kinetic model predicted a FAME content of 73.47 wt % at 9 hours, with a relative error of 0.140% using the enzyme in free form, while the FAME content predicted by the kinetic model was 47.04 wt % at 9 hours with a relative error of 0.026 using the enzyme in immobilized form. The decrease in the percentage of esters using the enzyme in immobilized form was attributed to limitations by external mass transfer.


2020 ◽  
Vol 20 (1) ◽  
pp. 67
Author(s):  
Hary Sulistyo ◽  
Edwin Nur Huda ◽  
Tri Sarifah Utami ◽  
Wahyudi Budi Sediawan ◽  
Suprihastuti Sri Rahayu ◽  
...  

Glycerol, as a by-product of biodiesel production, has recently increased due to the rapid growth of the biodiesel industry. Glycerol utilization is needed to increase the added value of glycerol. Glycerol can be converted to solketal, which can be used as a green fuel additive to enhance an octane or cetane number. Conversion of glycerol to solketal was conducted via acetalization reaction with acetone using amberlyst-15 as the catalyst. The objective of present study was to investigate the effect of some operation conditions on glycerol conversion. Furthermore, it also aimed to develop a kinetic model of solketal synthesis with amberlyst-15 resins. The experiment was conducted in a batch reactor, equipped with cooling water, thermometer, stirrer, and a water bath. The variables that have been investigated in the present work were reaction temperature, reactants molar ratio, catalyst loading, and stirrer speed for 3 hours of reaction time. Temperatures, reactants molar ratio, and stirrer speed appeared to have a significant impact on glycerol conversion, where the higher values led to higher conversion. On the other hand, in the presence of catalyst, the increase of catalyst loading has a less significant impact on glycerol conversion. The results showed that the highest glycerol conversion was 68.75%, which was obtained at 333 K, the reactant’s molar ratio was  4, the amount of catalyst was 1 wt%, and stirrer speed of 500 rpm. Based on the pseudo-homogeneous kinetic model, the resulting kinetic model suitable for this glycerol capitalization. The value of parameters k and Ea were 1.6135 108 min-1 and 62.226 kJ mol-1,respectively. The simulation model generally fits the experimental data reasonably well in the temperature range of 313-333 K.


2014 ◽  
Vol 7 (1) ◽  
pp. 29 ◽  
Author(s):  
Silvia Cesarini ◽  
Rune Haller ◽  
Pilar Diaz ◽  
Per Nielsen

2013 ◽  
Vol 85-86 ◽  
pp. 156-168 ◽  
Author(s):  
Sergey N. Fedosov ◽  
Jesper Brask ◽  
Anders K. Pedersen ◽  
Mathias Nordblad ◽  
John M. Woodley ◽  
...  

2021 ◽  
Vol 46 (1SI) ◽  
pp. 75-89
Author(s):  
Danilo Antonio Da Silva ◽  
Adriano De Vasconcellos ◽  
Jos� Geraldo Nery

This study reports the application of metallo-stannosilicates as potential inorganic solid matrixes for enzymes immobilization and their use as a heterogenous catalysts in enzymatic transesterification reactions for the conversion of triacylglycerides into fatty acid ethyl esters (FAEEs). Several stannosilicates were synthesized and physicochemical characterized by X-ray powder diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM-EDS), Brunauer-Emmett-Teller (BET)-N2 surface area analysis and solid-state magic-angle spinning nuclear magnetic resonance (MAS NMR 29Si and 119Sn nuclei) techniques. The experimental results for enzymes immobilization were promising, especially for a nickel ion-exchanged metallo-stannosilicate, which were able to immobilize 82 +- 6% of Thermomyces lanuginosus lipase and also kept a high enzymatic activity (42 +- 3 U mg�1). Systematic catalytic reactions for conversion of refined palm oil (Elaeis guineensis) using some of these stannosilicates enzymes complexes yielded 63.3 +- 0.7% of FAEEs. It is worth noticing that, when the transesterification reaction was performed with (a) the as-made stannosilicate without enzymes and (b) the equivalent amount of immobilized Thermomyces lanuginosus lipase in its free form, the FAEEs yield sharply decreased to less than 5.0% and 6.3 +- 0.3%, respectively. This result is a clear evidence of a synergistic effect among the metallo-stannosilicates and the immobilized enzymes.


Sign in / Sign up

Export Citation Format

Share Document