scholarly journals Structural Basis for Recognition and Sequestration of UUUOH 3′ Temini of Nascent RNA Polymerase III Transcripts by La, a Rheumatic Disease Autoantigen

2006 ◽  
Vol 21 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Marianna Teplova ◽  
Yu-Ren Yuan ◽  
Anh Tuân Phan ◽  
Lucy Malinina ◽  
Serge Ilin ◽  
...  
2019 ◽  
Author(s):  
Matthias K. Vorländer ◽  
Florence Baudin ◽  
Robyn D. Moir ◽  
René Wetzel ◽  
Wim J. H. Hagen ◽  
...  

ABSTRACTMaf1 is a highly conserved central regulator of transcription by RNA polymerase III (Pol III), and Maf1 activity influences a wide range of phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, which establishes how Maf1 achieves transcription repression. In the Maf1-bound state, Pol III elements that are involved in transcription initiation are sequestered, and the active site is sealed off due to ordering of the mobile C34 winged helix 2 domain. Specifically, the Maf1 binding site overlaps with the binding site of the Pol III transcription factor TFIIIB and DNA in the pre-initiation complex, rationalizing that binding of Maf1 and TFIIIB to Pol III are mutually exclusive. We validate our structure using variants of Maf1 with impaired transcription-inhibition activity. These results reveal the exact mechanism of Pol III inhibition by Maf1, and rationalize previous biochemical data.


Nature ◽  
2018 ◽  
Vol 553 (7688) ◽  
pp. 301-306 ◽  
Author(s):  
Guillermo Abascal-Palacios ◽  
Ewan Phillip Ramsay ◽  
Fabienne Beuron ◽  
Edward Morris ◽  
Alessandro Vannini

1992 ◽  
Vol 12 (5) ◽  
pp. 2260-2272
Author(s):  
F E Campbell ◽  
D R Setzer

Xenopus RNA polymerase III specifically initiates transcription on poly(dC)-tailed DNA templates in the absence of other class III transcription factors normally required for transcription initiation. In experimental analyses of transcription termination using DNA fragments with a 5S rRNA gene positioned downstream of the tailed end, only 40% of the transcribing polymerase molecules terminate at the normally efficient Xenopus borealis somatic-type 5S rRNA terminators; the remaining 60% read through these signals and give rise to runoff transcripts. We find that the nascent RNA strand is inefficiently displaced from the DNA template during transcription elongation. Interestingly, only polymerases synthesizing a displaced RNA terminate at the 5S rRNA gene terminators; when the nascent RNA is not displaced from the template, read-through transcripts are synthesized. RNAs with 3' ends at the 5S rRNA gene terminators are judged to result from authentic termination events on the basis of multiple criteria, including kinetic properties, the precise 3' ends generated, release of transcripts from the template, and recycling of the polymerase. Even though only 40% of the polymerase molecules ultimately terminate at either of the tandem 5S rRNA gene terminators, virtually all polymerases pause there, demonstrating that termination signal recognition can be experimentally uncoupled from polymerase release. Thus, termination is dependent on RNA strand displacement during transcription elongation, whereas termination signal recognition is not. We interpret our results in terms of a two-step model for transcription termination in which polymerase release is dependent on the fate of the nascent RNA strand during transcription elongation.


2020 ◽  
Vol 27 (3) ◽  
pp. 229-232 ◽  
Author(s):  
Matthias K. Vorländer ◽  
Florence Baudin ◽  
Robyn D. Moir ◽  
René Wetzel ◽  
Wim J. H. Hagen ◽  
...  

1992 ◽  
Vol 12 (5) ◽  
pp. 2260-2272 ◽  
Author(s):  
F E Campbell ◽  
D R Setzer

Xenopus RNA polymerase III specifically initiates transcription on poly(dC)-tailed DNA templates in the absence of other class III transcription factors normally required for transcription initiation. In experimental analyses of transcription termination using DNA fragments with a 5S rRNA gene positioned downstream of the tailed end, only 40% of the transcribing polymerase molecules terminate at the normally efficient Xenopus borealis somatic-type 5S rRNA terminators; the remaining 60% read through these signals and give rise to runoff transcripts. We find that the nascent RNA strand is inefficiently displaced from the DNA template during transcription elongation. Interestingly, only polymerases synthesizing a displaced RNA terminate at the 5S rRNA gene terminators; when the nascent RNA is not displaced from the template, read-through transcripts are synthesized. RNAs with 3' ends at the 5S rRNA gene terminators are judged to result from authentic termination events on the basis of multiple criteria, including kinetic properties, the precise 3' ends generated, release of transcripts from the template, and recycling of the polymerase. Even though only 40% of the polymerase molecules ultimately terminate at either of the tandem 5S rRNA gene terminators, virtually all polymerases pause there, demonstrating that termination signal recognition can be experimentally uncoupled from polymerase release. Thus, termination is dependent on RNA strand displacement during transcription elongation, whereas termination signal recognition is not. We interpret our results in terms of a two-step model for transcription termination in which polymerase release is dependent on the fate of the nascent RNA strand during transcription elongation.


2021 ◽  
Author(s):  
Guillermo Abascal-Palacios ◽  
Laura Jochem ◽  
Carlos Pla-Prats ◽  
Fabienne Beuron ◽  
Alessandro Vannini

Retrotransposons are endogenous elements that have the ability to mobilise their DNA and integrate at different locations in the host genome. In budding yeast, the Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase III-transcribed genes, such as the genes of transfer RNAs, representing a paradigm for specific targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å-resolution of an active Ty3 strand-transfer complex (Ty3 intasome) caught in the act of integrating onto a specific tRNA gene bound to the RNA Polymerase III general transcription factor TFIIIB, which is required for Ty3 specific targeting. The structure unravels the molecular mechanisms underlying Ty3 integration specificity at RNA Polymerase III-transcribed genes and sheds light into the architecture of a retrotransposon integration machinery during the process of strand transfer at a genomic locus. The Ty3 intasome establishes contacts with a region of the TATA-binding protein (TBP), a subunit of TFIIIB, which is blocked by the ubiquitous transcription regulator negative cofactor 2 (NC2) in RNA Pol II-transcribed genes. A previously unrecognised chromodomain of the Ty3 integrase mediates non-canonical interactions with TFIIIB and the tRNA gene itself, defining with extreme precision the position of the integration site. Surprisingly, Ty3 retrotransposon tethering to TFIIIB topologically resembles LEDGF/p75 transcription factor targeting by HIV retrovirus, highlighting mechanisms of convergent evolution by unrelated mobile elements and host organisms. The Ty3 intasome-TFIIIB-tRNA promoter complex presented here represents a detailed molecular snapshot of a general transcription factor's co-option by a mobile element, resulting in harmless integration into the host genome.


2021 ◽  
Author(s):  
Romy Boettcher ◽  
Ines Schmidts ◽  
Volker Nitschko ◽  
Petar Duric ◽  
Klaus Foerstemann

DNA double-strand breaks are among the most toxic lesions that can occur in a genome and their faithful repair is thus of great importance. Recent findings have uncovered a role for local transcription that initiates at the break and forms a non-coding transcript, called damage-induced long non-coding RNA or dilncRNA, which helps to coordinate the DNA transactions necessary for repair. We provide nascent RNA sequencing-based evidence that dilncRNA transcription by RNA polymerase II is more efficient if the DNA break occurs in an intron-containing gene in Drosophila. The spliceosome thus stimulates recruitment of RNA polymerase to the break, rather than the annealing of sense and antisense RNA. In contrast, RNA polymerase III nascent RNA libraries did not contain reads corresponding to the cleaved loci. Furthermore, selective inhibition of RNA polymerase III did not reduce the yield of damage-induced siRNAs (derived from the dilncRNA in Drosophila) and the damage-induced siRNA density was unchanged downstream of a T8 sequence, which terminates RNA polymerase III transcription. We thus found no evidence for a participation of RNA polymerase III in dilncRNA transcription and damage-induced siRNA generation in flies.


Sign in / Sign up

Export Citation Format

Share Document