scholarly journals A Consensus of Core Protein Complex Compositions for Saccharomyces cerevisiae

2010 ◽  
Vol 38 (6) ◽  
pp. 916-928 ◽  
Author(s):  
Joris J. Benschop ◽  
Nathalie Brabers ◽  
Dik van Leenen ◽  
Linda V. Bakker ◽  
Hanneke W.M. van Deutekom ◽  
...  
2005 ◽  
Vol 38 (3) ◽  
pp. 433-443 ◽  
Author(s):  
Simone Vesentini ◽  
Alberto Redaelli ◽  
Franco M. Montevecchi

2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Hiromi Nishida

Eukaryotes possess a variety of histone-modifying protein complexes. Generally, a histone-modifying protein complex consists of multiple subunits, that is, a catalytic subunit and the associated subunits. In this study, I analyzed 62 and 48 subunits of the histone-modifying protein complexes ofSaccharomyces cerevisiaeandSchizosaccharomyces pombe, respectively. The evolutionary conservation levels of the 110 subunits were measured. The measurements revealed that the conservation levels of the catalytic subunits are significantly higher than those of the associated subunits of the histone acetyltransferase and deacetylase complexes; however, the conservation level of the catalytic subunits is similar to that of the associated subunits of the histone methyltransferase complexes. Thus, in the fungal histone acetylation and deacetylation systems, the catalytic subunits of histone-modifying protein complexes are conserved and the associated subunits are evolutionary lineage-specific. In contrast, in the fungal histone methylation system, both the catalytic and the associated subunits are evolutionary lineage-specific.


1991 ◽  
Vol 11 (2) ◽  
pp. 611-619 ◽  
Author(s):  
J T Olesen ◽  
J D Fikes ◽  
L Guarente

The fission yeast Schizosaccharomyces pombe is immensely diverged from budding yeast (Saccharomyces cerevisiae) on an evolutionary time scale. We have used a fission yeast library to clone a homolog of S. cerevisiae HAP2, which along with HAP3 and HAP4 forms a transcriptional activation complex that binds to the CCAAT box. The S. pombe homolog php2 (S. pombe HAP2) was obtained by functional complementation in an S. cerevisiae hap2 mutant and retains the ability to associate with HAP3 and HAP4. We have previously demonstrated that the HAP2 subunit of the CCAAT-binding transcriptional activation complex from S. cerevisiae contains a 65-amino-acid "essential core" structure that is divisible into subunit association and DNA recognition domains. Here we show that Php2 contains a 60-amino-acid block that is 82% identical to this core. The remainder of the 334-amino-acid protein is completely without homology to HAP2. The function of php2 in S. pombe was investigated by disrupting the gene. Strikingly, like HAP2 in S. cerevisiae, the S. pombe gene is specifically involved in mitochondrial function. This contrasts to the situation in mammals, in which the homologous CCAAT-binding complex is a global transcriptional activator.


2004 ◽  
Vol 3 (6) ◽  
pp. 1609-1618 ◽  
Author(s):  
Amy L. Kullas ◽  
Mingchun Li ◽  
Dana A. Davis

ABSTRACT The success of Candida albicans as an opportunistic pathogen is based in part on its ability to adapt to diverse environments. The RIM101 pathway governs adaptation to neutral-alkaline environments and is required for virulence. Analysis of a genomic two-hybrid study conducted with Saccharomyces cerevisiae revealed that components involved in multivesicular bodies (MVB) transport may interact with RIM101 pathway members. Thus, we hypothesized that these proteins may function in the RIM101 pathway in C. albicans. We identified C. albicans homologs to S. cerevisiae Snf7p, Vps4p, and Bro1p and generated mutants in the cognate gene. We found that snf7Δ/Δ mutants, but not vps4Δ/Δ nor bro1Δ/Δ mutants, had phenotypes similar to, but more severe than, those of RIM101 pathway mutants. We found that the constitutively active RIM101-405 allele partially rescued snf7Δ/Δ mutant phenotypes. The vps4Δ/Δ mutant had subtle phenotypes, but these were not rescued by the RIM101-405 allele. Further, we found that the snf7Δ/Δ, vps4Δ/Δ, and bro1Δ/Δ mutants did not efficiently localize the vital dye FM4-64 to the vacuole and that it was often accumulated in an MVB-like compartment. This phenotype was not rescued by RIM101-405 or observed in RIM101 pathway mutants. These results suggest that Snf7p may serve two functions in the cell: one as a RIM101 pathway member and one for MVB transport to the vacuole.


Sign in / Sign up

Export Citation Format

Share Document