Functional consequences of complement activation on vascular endothelial cells – Results of a pilot RNA seq study

2018 ◽  
Vol 102 ◽  
pp. 204
Author(s):  
Magdalena Riedl ◽  
Erin Jacobs ◽  
Alan Zhou ◽  
Daniel Schlam ◽  
Sergio Grinstein ◽  
...  
2017 ◽  
Vol 2 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Magdalena Riedl ◽  
Damien G. Noone ◽  
Meraj A. Khan ◽  
Fred G. Pluthero ◽  
Walter H.A. Kahr ◽  
...  

Cell Cycle ◽  
2017 ◽  
Vol 16 (22) ◽  
pp. 2230-2238 ◽  
Author(s):  
Yuan Yue ◽  
Hao Jiang ◽  
Shouqing Yan ◽  
Yao Fu ◽  
Chang Liu ◽  
...  

2020 ◽  
Author(s):  
Xuanyu Liu ◽  
Wen Chen ◽  
Meng Yuan ◽  
Zhujun Li ◽  
Tian Meng ◽  
...  

AbstractKeloid is a benign dermal fibrotic disorder with some features similar to malignant tumors such as hyper-proliferation, apoptosis resistance and invasion. keloid remains a therapeutic challenge in terms of high recurrence rate and lack of satisfactory medical therapies, which is partially due to the incomplete understanding of keloid pathogenesis. A thorough understanding of the cellular and molecular mechanism of keloid pathogenesis would facilitate the development of novel medical therapies for this disease. Here, we performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of the keloid tissue, which included 21 cell clusters assigned to 11 cell lineages. Differential proportion analysis revealed significant expansion for fibroblasts and vascular endothelial cells in keloid compared with control, reflecting their strong association with keloid pathogenesis. We then identified five previously unrecognized subpopulations of keloid fibroblasts and four subpopulations of vascular endothelial cells. Comparative analyses were performed to identify the dysregulated pathways, regulators and ligand-receptor interactions for keloid fibroblasts and vascular endothelial cells, the two important cell lineages in keloid pathogenesis and for medical interventions. Our results highlight the roles of transforming growth factor beta and Eph-ephrin signaling pathways in both the aberrant fibrogenesis and angiogenesis of keloid. Critical regulators and signaling receptors implicated in the fibrogenesis of other fibrotic disorders, such as TWIST1, FOXO3, SMAD3 and EPHB2, ranked at the top in the regulatory network of keloid fibroblasts. In addition, tumor-related pathways such as negative regulation of PTEN transcription were found to be activated in keloid fibroblasts and vascular endothelial cells, which may be responsible for the malignant features of keloid. Our study put novel insights into the pathogenesis of keloid, and provided potential targets for medical therapies. Our dataset also constitutes a valuable resource for further investigations of the mechanism of keloid pathogenesis.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 876 ◽  
Author(s):  
Anton G. Kutikhin ◽  
Alexey E. Tupikin ◽  
Vera G. Matveeva ◽  
Daria K. Shishkova ◽  
Larisa V. Antonova ◽  
...  

Endothelial colony-forming cells (ECFC) are currently considered as a promising cell population for the pre-endothelialization or pre-vascularization of tissue-engineered constructs, including small-diameter biodegradable vascular grafts. However, the extent of heterogeneity between ECFC and mature vascular endothelial cells (EC) is unclear. Here, we performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC), and human umbilical vein endothelial cells (HUVEC). Characterization of the abovementioned cell populations was carried out by immunophenotyping, tube formation assay, and evaluation of proliferation capability while global gene expression profiling was conducted by means of RNA-seq. ECFC were similar to HUVEC in terms of immunophenotype (CD31+vWF+KDR+CD146+CD34-CD133-CD45-CD90-) and tube formation activity yet had expectedly higher proliferative potential. HCAEC and HUVEC were generally similar to ECFC with regards to their global gene expression profile; nevertheless, ECFC overexpressed specific markers of all endothelial lineages (NRP2, NOTCH4, LYVE1), in particular lymphatic EC (LYVE1), and had upregulated extracellular matrix and basement membrane genes (COL1A1, COL1A2, COL4A1, COL4A2). Proteomic profiling for endothelial lineage markers and angiogenic molecules generally confirmed RNA-seq results, indicating ECFC as an intermediate population between HCAEC and HUVEC. Therefore, gene expression profile and behavior of ECFC suggest their potential to be applied for a pre-endothelialization of bioartificial vascular grafts, whereas in terms of endothelial hierarchy they differ from HCAEC and HUVEC, having a transitional phenotype.


1988 ◽  
Vol 60 (02) ◽  
pp. 226-229 ◽  
Author(s):  
Jerome M Teitel ◽  
Hong-Yu Ni ◽  
John J Freedman ◽  
M Bernadette Garvey

SummarySome classical hemophiliacs have a paradoxical hemostatic response to prothrombin complex concentrate (PCC). We hypothesized that vascular endothelial cells (EC) may contribute to this “factor VIII bypassing activity”. When PCC were incubated with suspensions or monolayer cultures of EC, they acquired the ability to partially bypass the defect of factor VIII deficient plasma. This factor VIII bypassing activity distributed with EC and not with the supernatant PCC, and was not a general property of intravascular cells. The effect of PCC was even more dramatic on fixed EC monolayers, which became procoagulant after incubation with PCC. The time courses of association and dissociation of the PCC-derived factor VIII bypassing activity of fixed and viable EC monolayers were both rapid. We conclude that EC may provide a privileged site for sequestration of constituents of PCC which express coagulant activity and which bypass the abnormality of factor VIII deficient plasma.


1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


Sign in / Sign up

Export Citation Format

Share Document