Boundary layer analysis of micropolar dusty fluid with TiO2 nanoparticles in a porous medium under the effect of magnetic field and thermal radiation over a stretching sheet

2017 ◽  
Vol 244 ◽  
pp. 374-389 ◽  
Author(s):  
S.S. Ghadikolaei ◽  
Kh. Hosseinzadeh ◽  
M. Yassari ◽  
H. Sadeghi ◽  
D.D. Ganji
2015 ◽  
Vol 93 (5) ◽  
pp. 532-541 ◽  
Author(s):  
M. Modather M. Abdou ◽  
E. Roshdy EL-Zahar ◽  
Ali J. Chamkha

An analysis was carried out to study the effect of thermal radiation on magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid near the stagnation point of a vertical stretching sheet in a porous medium with internal heat generation–absorption. The flow is generated because of linear stretching of the sheet and influenced by the uniform magnetic field that is applied horizontally in the flow region. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically using an accurate implicit finite difference scheme. A comparison of the obtained results with previously published numerical results is done and the results are found to be in good agreement. The effects of the viscoelastic fluid parameter, magnetic field parameter, nonuniform heat source–sink, and the thermal radiation parameter on the heat transfer characteristics are presented graphically and discussed. The values of the skin friction coefficient and the local Nusselt number are tabulated for both cases of assisting and opposing flows.


Author(s):  
Noorzehan Fazahiyah Md Shab ◽  
Anati Ali

This paper investigated the problem of hydromagnetic boundary layer flow and heat transfer of a dusty fluid over a stretching sheet through a porous medium. The velocity slip was considered instead of the no-slip condition at the boundary. The governing partial equations were reduced into a set of non-linear ordinary differential equations by using the suitable similarity transformation. The transformed equations were numerically integrated using bvp4c in Matlab. The effects of various physical parameters on the velocity and temperature profiles of both phases, such as fluid-particle interaction parameter, magnetic parameter, mass concentration parameter, porosity parameter and Prandtl number were obtained and analyzed through several plots. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, the obtained numerical results were compared and found to be in good agreement with previously published results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Tesfaye Kebede ◽  
Eshetu Haile ◽  
Gurju Awgichew ◽  
Tadesse Walelign

In this paper, analytic approximation to the heat and mass transfer characteristics of a two-dimensional time-dependent flow of Williamson nanofluids over a permeable stretching sheet embedded in a porous medium has been presented by considering the effects of magnetic field, thermal radiation, and chemical reaction. The governing partial differential equations along with the boundary conditions were reduced to dimensionless forms by using suitable similarity transformation. The resulting system of ordinary differential equations with the corresponding boundary conditions was solved via the homotopy analysis method. The results of the study show that velocity, temperature, and concentration boundary layer thicknesses generally decrease as we move away from the surface of the stretching sheet and the Williamson parameter was found to retard the velocity but it enhances the temperature and concentration profiles near the surface. It was also found that increasing magnetic field strength, thermal radiation, or rate of chemical reaction speeds up the mass transfer but slows down the heat transfer rates in the boundary layer. The results of this study were compared with some previously published works under some restrictions, and they are found in excellent agreement.


Sign in / Sign up

Export Citation Format

Share Document