Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: Study of release kinetics, rheological, and thermodynamic properties

2020 ◽  
Vol 311 ◽  
pp. 113304
Author(s):  
Ahmed Snoussi ◽  
Moncef Chouaibi ◽  
Nabiha Bouzouita ◽  
Salem Hamdi
Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 394
Author(s):  
Esra Kocaman ◽  
Davide Rabiti ◽  
Juan Sebastian Murillo Moreno ◽  
Asli Can Karaca ◽  
Paul Van der Meeren

The permeation of amino acids and di-peptides with different hydrophobicities across the oil phase in W/O/W double emulsions was investigated at different concentrations, considering the pH of the aqueous phase. Moreover, the particle size, yield of entrapped water and release kinetics of the double emulsions was evaluated as a function of time. Regarding the release of the entrapped amino acids and di-peptides, their hydrophobicity and the pH had a significant effect, whereas the concentration of the dissolved compound did not lead to different release kinetics. The release of the amino acids and di-peptides was faster at neutral pH as compared to acidic pH values due to the increased solute solubility in the oil phase for more hydrophobic molecules at neutral pH. Regarding the effect of the type of oil, much faster amino acid transport was observed through MCT oil as compared to LCT oil, which might be due to its higher solubility and/or higher diffusivity. As di-peptides released faster than amino acids, it follows that the increased solubility overruled the effect from the decreased diffusion coefficient of the dissolved compound in the oil phase.


2021 ◽  
Author(s):  
Arantzazu Santamaria-Echart ◽  
Isabel P. Fernandes ◽  
Samara C. Silva ◽  
Stephany C. Rezende ◽  
Giovana Colucci ◽  
...  

The food industry depends on using different additives, which increases the search for effective natural or natural-derived solutions, to the detriment of the synthetic counterparts, a priority in a biobased and circular economy scenario. In this context, different natural emulsifiers are being studied to create a new generation of emulsion-based products. Among them, phospholipids, saponins, proteins, polysaccharides, biosurfactants (e.g., compounds derived from microbial fermentation), and organic-based solid particles (Pickering stabilizers) are being used or start to gather interest from the food industry. This chapter includes the basic theoretical fundamentals of emulsions technology, stabilization mechanisms, and stability. The preparation of oil-in-water (O/W) and water-in-oil (W/O) emulsions, the potential of double emulsions, and the re-emerging Pickering emulsions are discussed. Moreover, the most relevant natural-derived emulsifier families (e.g., origin, stabilization mechanism, and applications) focusing food applications are presented. The document is grounded in a bibliographic review mainly centered on the last 10-years, and bibliometric data was rationalized and used to better establish the hot topics in the proposed thematic.


LWT ◽  
2018 ◽  
Vol 96 ◽  
pp. 419-425 ◽  
Author(s):  
Najme Kheynoor ◽  
Seyed Mohammad Hashem Hosseini ◽  
Gholam-Hosseini Yousefi ◽  
Hadi Hashemi Gahruie ◽  
Gholam-Reza Mesbahi

Lab on a Chip ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 422-431 ◽  
Author(s):  
Bo Cai ◽  
Tian-Tian Ji ◽  
Ning Wang ◽  
Xin-Bo Li ◽  
Rong-Xiang He ◽  
...  

Water-in-oil-in-water double emulsions (W/O/W DEs) are generated to encapsulate non-adherent cells and anchored in an array on-chip for in situ assays.


2016 ◽  
Vol 12 (7) ◽  
pp. 615-624
Author(s):  
Mónica Escobar Blanco ◽  
J. Alberto Quezada Gallo ◽  
K. Shaindel Estrada Arias ◽  
Ruth Pedroza Islas

Abstract Anthocyanin extract (AE) was encapsulated in W1/O/W2 double emulsions and colorimetry technique using the CIE L*a*b* system was used to determine the release kinetics. Parameters a* and b* better correlated the variations in color of emulsions due to the release of AE into the external phase. Chroma value (C*) was used for tracking these color variations and to determine the release kinetics. The emulsions showed high stability, droplet sizes didn’t change after 30 days of storage (D4,3=4.74±0.12 μm), and 2.7 % AE was released to the external phase after this time. The possible release mechanism of AE from the internal phase of the emulsion is diffusion controlled with good accordance to Fick’s first law (R2=0.9938) with a diffusion coefficient of 7.15×10−8 cm2/d.


Sign in / Sign up

Export Citation Format

Share Document