Colorimetry Technique as a Tool for Determining Release Kinetics and Mass Transfer Parameters of Anthocyanins Encapsulated in W1/O/W2 Double Emulsions

2016 ◽  
Vol 12 (7) ◽  
pp. 615-624
Author(s):  
Mónica Escobar Blanco ◽  
J. Alberto Quezada Gallo ◽  
K. Shaindel Estrada Arias ◽  
Ruth Pedroza Islas

Abstract Anthocyanin extract (AE) was encapsulated in W1/O/W2 double emulsions and colorimetry technique using the CIE L*a*b* system was used to determine the release kinetics. Parameters a* and b* better correlated the variations in color of emulsions due to the release of AE into the external phase. Chroma value (C*) was used for tracking these color variations and to determine the release kinetics. The emulsions showed high stability, droplet sizes didn’t change after 30 days of storage (D4,3=4.74±0.12 μm), and 2.7 % AE was released to the external phase after this time. The possible release mechanism of AE from the internal phase of the emulsion is diffusion controlled with good accordance to Fick’s first law (R2=0.9938) with a diffusion coefficient of 7.15×10−8 cm2/d.

2020 ◽  
Vol 13 (1) ◽  
pp. 11 ◽  
Author(s):  
Yhors Ciro ◽  
John Rojas ◽  
Maria Alhajj ◽  
Gustavo Carabali ◽  
Constain Salamanca

A promising strategy to improve the effectivity of anticancer treatment and decrease its side effects is to modulate drug release by using nanoparticulates (NPs) as carriers. In this study, methotrexate-loaded chitosan–polyanion nanoparticles were produced by polyelectrolyte complexation assisted by high-intensity sonication, using several anionic polymers, such as the sodium and potassium salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene), here named PAM-2 and PAM-18, respectively. Such NPs were analyzed and characterized according to particle size, polydispersity index, zeta potential and encapsulation efficiency. Likewise, their physical stability was tested at 4 °C and 40 °C in order to evaluate any change in the previously mentioned particle parameters. The in vitro methotrexate release was assessed at a pH of 7.4, which simulated physiological conditions, and the data were fitted to the heuristic models of order one, Higuchi, Peppas–Sahlin and Korsmeyer–Peppas. The results revealed that most of the MTX-chitosan–polyanion NPs have positive zeta potential values, sizes <280 nm and monodisperse populations, except for the NPs formed with PAM-18 polyanions. Further, the NPs showed adequate physical stability, preventing NP–NP aggregation. Likewise, these carriers modified the MTX release by an anomalous mechanism, where the NPs formed with PAM-2 polymer led to a release mechanism controlled by diffusion and relaxation, whereas the NPs formed with PAM-18 led to a mainly diffusion-controlled release mechanism.


2014 ◽  
Vol 884-885 ◽  
pp. 186-189 ◽  
Author(s):  
San Zhu ◽  
Xiao Gang Luo ◽  
Li Bin Ma ◽  
Ya Nan Xue ◽  
Ning Cai ◽  
...  

Novel composite resins with dual absorption properties of water and oil are prepared by the polymerization of high internal phase emulsion (HIPEs) with n-butyl methacrylate as the external phase monomer and acrylamide as the internal phase monomer. The subsequent polymerization leads to the formation of water and oil dual-absorption composite resins. The morphology of porous structure and microcosmic phase separation after water/oil uptake is observed by scanning electron microscopy (SEM). The water and oil absorbency strongly depend on composition. The composites with saturated water uptake could absorb the chloroform again but cant absorb water if saturated with chloroform first. And the resins exhibit great reusability, keeping almost constant absorbency. The present methodology could be a potential approach to obtain amphiphilic composites, which possess potential applications in the bioengineering, medical and industrial fields.


2015 ◽  
Vol 3 (20) ◽  
pp. 4118-4122 ◽  
Author(s):  
Bernice H. L. Oh ◽  
Alexander Bismarck ◽  
Mary B. Chan-Park

By varying the oligolysine units of chitosan-graft-oligoNIPAM-graft-oligolysine, high internal phase emulsions of different droplet sizes can be stabilized which can subsequently serve as template for macroporous polymers.


2021 ◽  
Vol 1 (2) ◽  
pp. 023-037
Author(s):  
Shailaja D ◽  
Latha K ◽  
Manasa D ◽  
Shirisha A ◽  
Padmavathi R ◽  
...  

Proniosomal technology is a novel solution for poorly soluble drugs. Proniosomes are water-soluble carrier particles which are coated with non-ionic surfactants. Proniosomal gels were prepared by coacervation phase separation method using non-ionic surfactants, lipid carriers and cholesterol as a membrane stabilizer. FTIR compatibility studies revealed that the drug and excipients were compatible. All formulations were evaluated for pH, drug content, extrudability, spreadability, viscosity, in-vitro, ex-vivo, skin irritation and stability studies. Among formulations prepared, F80H1 has shown higher % EE (83.02) and least diffusion through dialysis membrane i.e., 17.68%. With ex-vivo studies, F80H1 formulation has shown highest skin deposition and lower flux of sertaconazole nitrate through the rat skin. F80H1 was selected as final optimized formulation. F80H1 exhibited good stability and SEM studies revealed that the vesicles were spherical in shape. The optimized formulation was found to follow zero order release kinetics and korsmeyer-peppas release mechanism. F80H1 found to be non-irritant and stable from skin irritation and stability studies.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Juan Pablo Quintal Martínez ◽  
Jorge Carlos Ruiz Ruiz ◽  
Maira Rubí Segura Campos

This study was oriented towards encapsulation of S. rebaudiana extract and the study of its release kinetics. The desired encapsulation was achieved by the ionotropic gelation method using sodium alginate and inulin of polymeric constituents. Characterization of the capsules was performed by micrometric properties, encapsulation efficiency, in vitro extract release analysis, and biological activity of released extract. The in vitro release profiles from different capsules were applied on different kinetic models. The prepared capsules were found spherical in shape with diameters ranging from 2.07 to 2.63 mm, having the encapsulation efficiencies of 43.77% and 56.53% for phenolic compounds and steviol glycosides, respectively. The best-fit model with the highest correlation coefficient was observed in the Ritger–Peppas model, indicating diffusion controlled principle. The release exponent n value obtained from the Korsmeyer–Peppas model varied between 0.2273 and 1.1719, confirming that the mechanism of S. rebaudiana extract bioactive compounds release was diffusion controlled.


1970 ◽  
Vol 4 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Santhosh Kumar Mankala ◽  
Nishanth Kumar Nagamalli ◽  
Ramakrishna Raprla ◽  
Rajyalaxmi Kommula

Gliclazide is an oral hypoglycemic agent used in management of non-insulin dependent diabetes mellitus. Among people who are suffering from long term disorders, the major were categorized under diabetes so, a dosage form is needed to provide continuous therapy with high margin of safety & such dosage form can be achieved by microencapsulation. Gliclazide microspheres with sodium alginate (coat material, gum kondagogu, gum guar and xanthan gum (mucoadhesive agents) were prepared by orifice-ionic gelation and emulsification ionic gelation techniques varying concentrations (1:0.25, 1:0.5, 1:0.75 and 1:1). Formulations were then evaluated for surface morphology, particle shape, Carr’s index, microencapsulation efficiency, drug release, mucoadhesion studies. Compatibility studies were performed by FTIR, DSC, and XRD techniques and no interactions were found between drug and excepients used. The microspheres were found spherical and free flowing with emulsion ionic gelation technique with a size range 400-600μm. % drug content and encapsulation efficiency found in the range of 55%-68% and, 86.23%-94.46% respectively. All microspheres showed good mucoadhesive property in in-vitro wash of test. In vitro drug release studies showed that the guar gum has more potentiality to retard the drug release compared to other gums and concentrations. Drug release from the microspheres was found slow following zero order release kinetics with non-fickian release mechanism stating release depended on the coat: core ratio and the method employed. The concentration of 1:1 of SA: GG (EMG 4) found suitable for preparing the controlled release formulation of gliclazide stating emulsification gelation technique is the best among followed.   Key words: Gliclazide; Natural gums; orifice ionic gelation technique; emulsification ionic gelation technique DOI: http://dx.doi.org/10.3329/sjps.v4i1.8865 SJPS 2011; 4(1): 38-48


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
A. L. Ahmad ◽  
M. M. H. Shah Buddin ◽  
B. S. Ooi ◽  
Adhi Kusumastuti

The aim of this research is to quantify the occurrence of membrane breakage in vegetable oil based Emulsion Liquid Membrane (ELM). Basically, ELM consists of three main phases; internal, external and membrane. In this work, the membrane phase was prepared by dissolving Span 80 as surfactant and Aliquat 336 as carrier in commercial grade corn oil. As a way to promote sustainable development, vegetable oil which is environmentally benign diluent was incorporated in the formulation of ELM. The influence of several important parameters towards membrane breakage were studied. They are carrier and surfactant concentration, W/O volume ratio, emulsification time, internal phase concentration as well as stirring speed. Based on the data obtained, emulsion prepared using 4 wt% Aliquat 336 and 3 wt% Span 80 resulted in the most stable emulsion with only 0.05% membrane breakage. The emulsion was produced using W/O volume ratio of 1/3 and it was homogenized with the assistance of ultrasound for 15 min. Moreover, emulsion produced able to provide a fair balance between emulsion stability and Cd(II) permeability as it able to remove 98.20% Cd(II) ions from the external phase. 


Author(s):  
Barkat Khan ◽  
Faheem Haider ◽  
Kifayat Shah ◽  
Bushra Uzair ◽  
Kaijian Hou ◽  
...  

This study was carried out to formulate and evaluate controlled release (CR) matrix tablets of Acyclovir using combination of hydrophilic and hydrophobic polymers. Acyclovir is a guanine derivative and is its half-life is short hence administered five times a day using immediate release tablets. Six formulations (F1-F6) were developed using Ethocel and Carbopol in equal combinations at drug-polymer (D:P) ratio of 10:5, 10:6, 10:7, 10:8, 10:9 and 10:10. Solubility study was performed using six different solvents. The compatibility studies were carried out using FTIR and DSC. According to USP, Quality Control and dimensional tests (hardness, friability, disintegration and thickness) were executed. In-vitro drug release studies of Acyclovir was carried out in dissolution apparatus using using 0.1 N HCl medium at constant temperature of 37 ± 0.5 ºC. In order to analyze the drug release kinetics, five different mathematical models were applied to the release data. The results showed that there was no incompatibility between drug and polymers. Physical QC tests were found within limits of USP. The release was retarded upto 24 hrs and non-fickian in-vitro drug release mechanism was found. A formulation developed using blend of polymers, showed excellent retention and desired release profiles thus providing absolute control for 24 hrs.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


Author(s):  
Lina Winarti ◽  
Bagus Tri Laksono ◽  
Lusia Oktora Ruma Kumala Sari

Diltiazem hydrochloride (HCl) is a category of calcium channel blocker used as an antihypertensive agent. Diltiazem HCl is a low bioavailable drug due to high first-pass metabolism and a short half-life (3-5 hours); hence mucoadhesive buccal film was made to overcome this weakness. Bioavailability of Diltiazem HCl increase if the buccal preparations can contact the mucosa for a sufficient time. Therefore, in this study, two polymers are combined to obtain good film characteristics, especially residence time and mucoadhesive strength. This study was aimed to optimize Hydroxy Propyl Methyl Cellulose (HPMC) and Carbomer's amount in Diltiazem HCl mucoadhesive buccal film. The formulas were prepared by the solvent casting method and optimized with design expert software. The release kinetics and mechanism were evaluated using DDSolver program. The optimum amount of polymer obtained from optimization was 40 mg of HPMC and 10 mg of Carbomer. The optimum formula's swelling index was 4.18. The mucoadhesive strength was 53.07 gF, and the mucoadhesive residence time was 529.33 min. The FTIR spectra showed there was no interaction between Diltiazem HCl and other excipients. Thus it did not disturb the therapeutic effect. Based on the DDSolver statistical parameters and curve-fitting, the dissolution model of Diltiazem HCl from buccal mucoadhesive film follows Korsmeyer-Peppas. The release exponent (n) is 0.55, which shows a non-fickian/anomalous diffusion release mechanism. These mechanisms represent drug release controlled by a combination of diffusion and erosion.


Sign in / Sign up

Export Citation Format

Share Document