The characteristic acoustic impedance of the thermodynamic ideal system and its “excess” for a non-ideal mixture

2021 ◽  
Vol 325 ◽  
pp. 115142
Author(s):  
Wojciech Marczak
Author(s):  
Jason R. Swedlow ◽  
Neil Osheroff ◽  
Tim Karr ◽  
John W. Sedat ◽  
David A. Agard

DNA topoisomerase II is an ATP-dependent double-stranded DNA strand-passing enzyme that is necessary for full condensation of chromosomes and for complete segregation of sister chromatids at mitosis in vivo and in vitro. Biochemical characterization of chromosomes or nuclei after extraction with high-salt or detergents and DNAse treatment showed that topoisomerase II was a major component of this remnant, termed the chromosome scaffold. The scaffold has been hypothesized to be the structural backbone of the chromosome, so the localization of topoisomerase II to die scaffold suggested that the enzyme might play a structural role in the chromosome. However, topoisomerase II has not been studied in nuclei or chromosomes in vivo. We have monitored the chromosomal distribution of topoisomerase II in vivo during mitosis in the Drosophila embryo. This embryo forms a multi-nucleated syncytial blastoderm early in its developmental cycle. During this time, the embryonic nuclei synchronously progress through 13 mitotic cycles, so this is an ideal system to follow nuclear and chromosomal dynamics.


1978 ◽  
Vol 21 (2) ◽  
pp. 295-308
Author(s):  
Terry L. Wiley ◽  
Raymond S. Karlovich

Contralateral acoustic-reflex measurements were taken for 10 normal-hearing subjects using a pulsed broadband noise as the reflex-activating signal. Acoustic impedance was measured at selected times during the on (response maximum) and off (response minimum) portions of the pulsed activator over a 2-min interval as a function of activator period and duty cycle. Major findings were that response maxima increased as a function of time for longer duty cycles and that response minima increased as a function of time for all duty cycles. It is hypothesized that these findings are attributable to the recovery characteristics of the stapedius muscle. An explanation of portions of the results from previous temporary threshold shift experiments on the basis of acoustic-reflex dynamics is proposed.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1494-1499
Author(s):  
Shahid Ahmad Siddiqui

The episode of Covid19 (CORONA VIRUS) has become one of the greatest worldwide dangers around the world, which has now tainted over 1.7 million individuals with deaths of over 100,000 lives far & wide. Under these extraordinary conditions, there are no entrenched rules for cancer patients. The danger for genuine infection & passing in CORONA VIRUS cases increments with propelling age & existing co-morbid medical issue. After the rise of primary suspects in China during last month of 2019, enormous exploration endeavors have been in progress to comprehend the instruments of infectivity & contagiousness of coronavirus, a lethal infection liable for wretched endurance results. To limit the death rate, it gets judicious to distinguish indications quickly & utilize medicines suitably. Despite the fact that no fix has been set up, different clinical preliminaries are in progress to decide the most ideal system. Overseeing patients with cancer in these conditions is a fair task, considering their weak immune status & their ill health. Through this thorough audit, we talk about the effect of CORONA VIRUS on wellbeing & the immune system of who are infected, assessing the most recent care plan draws near & progressing clinical preliminaries. Also, we talk about difficulties confronted while treating cancer patients & propose possible ways to deal with these weak populace during pandemic.


2014 ◽  
Vol 33 (2) ◽  
pp. 163-168
Author(s):  
Xiujuan WANG ◽  
Jiliang WANG ◽  
Wei LI ◽  
Nittala Satyavani ◽  
Kalachand Sain

2020 ◽  
Vol 12 (12) ◽  
pp. 1915
Author(s):  
Joe K. Taylor ◽  
Henry E. Revercomb ◽  
Fred A. Best ◽  
David C. Tobin ◽  
P. Jonathan Gero

The Absolute Radiance Interferometer (ARI) is an infrared spectrometer designed to serve as an on-orbit radiometric reference with the ultra-high accuracy (better than 0.1 K 3‑σ or k = 3 brightness temperature at scene brightness temperature) needed to optimize measurement of the long-term changes of Earth’s atmosphere and surface. If flown in an orbit that frequently crosses sun-synchronous orbits, ARI could be used to inter-calibrate the international fleet of infrared (IR) hyperspectral sounders to similar measurement accuracy, thereby establishing an observing system capable of achieving sampling biases on high-information-content spectral radiance products that are also < 0.1 K 3‑σ. It has been shown that such a climate observing system with <0.1 K 2‑σ overall accuracy would make it possible to realize times to detect subtle trends of temperature and water vapor distributions that closely match those of an ideal system, given the limit set by the natural variability of the atmosphere. This paper presents the ARI sensor's overall design, the new technologies developed to allow on-orbit verification and test of its accuracy, and the laboratory results that demonstrate its capability. In addition, we describe the techniques and uncertainty estimates for transferring ARI accuracy to operational sounders, providing economical global coverage. Societal challenges posed by climate change suggest that a Pathfinder ARI should be deployed as soon as possible.


2014 ◽  
Vol 706 ◽  
pp. 25-34 ◽  
Author(s):  
G. Füsun Alişverişçi ◽  
Hüseyin Bayiroğlu ◽  
José Manoel Balthazar ◽  
Jorge Luiz Palacios Felix

In this paper, we analyzed chaotic dynamics of an electromechanical damped Duffing oscillator coupled to a rotor. The electromechanical damped device or electromechanical vibration absorber consists of an electrical system coupled magnetically to a mechanical structure (represented by the Duffing oscillator), and that works by transferring the vibration energy of the mechanical system to the electrical system. A Duffing oscillator with double-well potential is considered. Numerical simulations results are presented to demonstrate the effectiveness of the electromechanical vibration absorber. Lyapunov exponents are numerically calculated to prove the occurrence of a chaotic vibration in the non-ideal system and the suppressing of chaotic vibration in the system using the electromechanical damped device.


Sign in / Sign up

Export Citation Format

Share Document