Transport numbers in the basic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid

2021 ◽  
pp. 116147
Author(s):  
V.A. Elterman ◽  
P. Yu. Shevelin ◽  
L.A. Yolshina ◽  
E.G. Vovkotrub ◽  
A.V. Borozdin
Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 359
Author(s):  
László Koók ◽  
Piroska Lajtai-Szabó ◽  
Péter Bakonyi ◽  
Katalin Bélafi-Bakó ◽  
Nándor Nemestóthy

Hydrophobic ionic liquids (IL) may offer a special electrolyte in the form of supported ionic liquid membranes (SILM) for microbial fuel cells (MFC) due to their advantageous mass transfer characteristics. In this work, the proton and ion transfer properties of SILMs made with IL containing imidazolium cation and [PF6]− and [NTf2]− anions were studied and compared to Nafion. It resulted that both ILs show better proton mass transfer and diffusion coefficient than Nafion. The data implied the presence of water microclusters permeating through [hmim][PF6]-SILM to assist the proton transfer. This mechanism could not be assumed in the case of [NTf2]− containing IL. Ion transport numbers of K+, Na+, and H+ showed that the IL with [PF6]− anion could be beneficial in terms of reducing ion transfer losses in MFCs. Moreover, the conductivity of [bmim][PF6]-SILM at low electrolyte concentration (such as in MFCs) was comparable to Nafion.


2020 ◽  
Vol 98 (9) ◽  
pp. 554-563
Author(s):  
Bruno Gélinas ◽  
Thomas Bibienne ◽  
Mickaël Dollé ◽  
Dominic Rochefort

Used in their pure, undiluted form, ionic liquids usually result in Li-ion battery electrolytes with inadequate performance due low Li+ transport numbers (tLi+). Alternatively, they can be used as additives dissolved in carbonates to maintain a high tLi+ while providing the electrolyte with additional properties such as resistance to combustion, current collector passivation, and decreased Li dendritic growth. Additional properties can be imparted to the ionic liquid via the modification of their structure. Ionic liquids modified with electroactive moieties such as ferrocene (Fc-IL) can be used as an additive in Li-ion battery (LiB) electrolytes to prevent cathode over-oxidation via the redox shuttle mechanism. The aim of the present work is to evaluate the properties of LiB electrolytes modified with such Fc-IL at different concentrations. At low concentrations (0.3–0.5 mol/L), the redox-active ionic liquid behaves as expected for a redox shuttle. We show that at 1 mol/L, however, the redox ionic liquid yields a different discharge behavior after the overcharging step, providing an increase in discharge capacity. This behavior is linked to the deposition of the ferrocenium-IL at the positive electrode. Such electrolyte is non-flammable and is highly efficient to achieve shuttling of excess charge. Based on this principle, it is expected that novel ionic liquids can be designed for development of other types of additives and contribute to developing safer battery electrolytes. As a part of this commemorative issue, this contribution highlights the type of collaborative research currently being done on energy storage devices at the Department of Chemistry at the Université de Montréal.


2020 ◽  
Vol 8 (38) ◽  
pp. 13368-13374
Author(s):  
Muhammad Umair Khan ◽  
Gul Hassan ◽  
Jinho Bae

This paper proposes a novel soft ionic liquid (IL) electrically functional device that displays resistive memory characteristics using poly(acrylic acid) partial sodium salt (PAA-Na+:H2O) solution gel and sodium hydroxide (NaOH) in a thin polydimethylsiloxane (PDMS) cylindrical microchannel.


Sign in / Sign up

Export Citation Format

Share Document